
	 	 初版第一稿　2023年10月25日（水） 

改訂第一稿　2024年 6月23日（日） 

改訂第二稿　2025年 1月20日（月） 

　改訂第三稿　2025年 8月26日（月） 

改訂第四稿　2025年11月14日（金） 

熱力学の基本概念と基本法則 
ー熱音響現象の理解を目指してー 

改訂第四版 

富永　昭 

- /  -1 154



目　次 

1. 熱学の基本概念	  ..........................................................................................................9
1.1. 熱流と温度を区別：ブラック	  ................................................................................................9
1.2. 熱素保存則に基づく熱学	  ......................................................................................................10
1.3. 気体の性質：状態方程式	  ......................................................................................................10
1.4. 熱素保存則の破綻	  ..................................................................................................................12
1.4.1 蒸気機関：ワット	  ...............................................................................................................12
1.4.2. 摩擦熱：ランフォード伯トンプソン	  .............................................................................13
1.4.3. 熱伝導：フーリエ	  ..............................................................................................................13

2. カルノー	  ....................................................................................................................15
2.1. 熱の動力としての効率	  ..........................................................................................................16
2.2. カルノー機関	  ...........................................................................................................................16
2.3. 微小カルノー機関	  ..................................................................................................................17
2.4. カルノー関数	  ...........................................................................................................................17

3. 熱電気現象：エネルギー流保存則	  ......................................................................20
3.1. ゼーベック効果	  .......................................................................................................................20
3.2. オームの法則	  ...........................................................................................................................20
3.3. ペルティエ効果	  .......................................................................................................................21
3.4. ジュール発熱	  ...........................................................................................................................22
3.5. トムソンの悩み	  ......................................................................................................................23
3.6. トムソン効果とトムソンの第一関係式	  .............................................................................23

4. 絶対温度：トムソン	  ...............................................................................................27

5. 熱力学第一法則：熱力学のエネルギー保存則	  .................................................29
5.1. 準静的変化	  ...............................................................................................................................32
5.2. 仕事流密度	  ...............................................................................................................................33

6. エントロピー流増大則：クラウジウスとトムソン	  .........................................35
6.1 熱流の正体：エントロピー流	  ...............................................................................................35
6.2. クラウジウスの不等式	  ..........................................................................................................36
6.3. 熱電気現象のトムソンの第二関係式	  .................................................................................41
6.4. 熱電気現象の相反関係	  ..........................................................................................................43

7. 示量性状態量としてのエントロピー：クラウジウス	  .....................................46

- /  -2 154



7.1. 熱力学の基本概念と基本法則	  .............................................................................................48
7.2. 孤立系のエントロピー増大則：時間の矢	  .........................................................................49

8. 管内音波の流体力学：クントとキルヒホッフ	  .................................................51
8.1. 音響変数と振動モード	  ..........................................................................................................53
8.2. ラグランジュ微分の線形長波長近似	  .................................................................................55
8.3. キルヒホッフ理論の基本方程式	  ..........................................................................................58
8.4. 振動圧力pと振動流速u：径方向分布	  ................................................................................60
8.4.1. 振動圧力pの径方向分布	  ...................................................................................................61
8.4.2. 振動流速の径方向分布	  ......................................................................................................61
8.5. 振動温度と振動エントロピー：径方向分布	  .....................................................................64
8.5.1. 振動温度の径方向分布	  ......................................................................................................64
8.5.2. 振動エントロピーの径方向分布	  ......................................................................................65
8.6. 管内音波の分散	  ......................................................................................................................65
8.6.1. 振動圧力と振動流速の軸方向変化	  .................................................................................65
8.6.2. 管内音波の音速	  ...................................................................................................................66
8.7. 共鳴周波数	  ...............................................................................................................................68

9. 平衡状態の熱力学：ギブズ	  ..................................................................................69

9.1. 平衡曲面	  ................................................................................................................69
9.2. マウスウェルの関係式	  ..........................................................................................................72
9.3. 局所平衡	  ...................................................................................................................................78
9.4. ラグランジュ微分の対流項	  ..................................................................................................79
9.5. 孤立系の平衡状態：揺らぎ	  ..................................................................................................80

10. 統計力学の影響	  ....................................................................................................83
10.1. 熱力学第三法則	  ....................................................................................................................83
10.2. 揺らぎと安定性	  ....................................................................................................................85
10.3. 相反関係とエントロピー生成最小の法則：Lars Onsager	  ......................................86
10.3.1. Onsagerの2月論文	  ........................................................................................................86
10.3.2. Onsagerの12月論文	  ......................................................................................................87

11. 拡張キルヒホッフ理論：クラマース	  ................................................................89
11.1. 拡張キルヒホッフ理論の対流項	  .......................................................................................90
11.2. 拡張キルヒホッフ理論の基本方程式	  ...............................................................................91
11.3. 振動流速の流路断面内分布	  ...............................................................................................93
11.4. 振動圧力の軸方向変化	  .......................................................................................................94

- /  -3 154



11.5. 振動温度と振動エントロピー	  ...........................................................................................94
11.5.1. 振動温度の流路断面内分布	  ...........................................................................................94
11.5.2. 振動流速の軸方向変化	  ...................................................................................................98
11.5.3. 振動エントロピーのラグランジュ微分	  .......................................................................99
11.6. 軸方向変化：位相差、圧力振幅、流速振幅	  ..................................................................99

12. 熱音響理論	  ..........................................................................................................104
12.1. 非平衡定常状態の熱力学概念	  ........................................................................................106
12.2. 蓄熱器の熱力学的機能	  ....................................................................................................106
12.3. 仕事流密度	  .........................................................................................................................112
12.4. エネルギー流密度の分布	  ................................................................................................113
12.5. 仕事源	  ..................................................................................................................................113
12.6. エントロピー流密度	  .........................................................................................................118
12.7. 熱音響理論の問題点	  .........................................................................................................125
12.8. エントロピー生成密度	  .....................................................................................................127

13. 安定な熱音響現象の温度勾配	  .........................................................................132
13.1. 新たな関係	  .........................................................................................................................132
13.2. 安定な温度勾配：位相差θやωταとの関係	  ...........................................................136
13.3. エントロピー流密度：位相差θやωταとの関係	  ...................................................139
13.5. 熱音響自励振動の仕事源	  ................................................................................................142
13.6. 軸方向変化：位相差と音響インピーダンス	  ...............................................................146

14. 蓄熱器の数値シミュレーションに向けて	  ....................................................149

残された問題：吸放熱器	.........................................................................................153

- /  -4 154



　18世紀中頃に潜熱概念や顕熱概念にたどり着いたブラック（Joseph Black、1728-99

年）は温度と熱とを区別した。以後、温度や圧力のような示強性状態量は平衡状態の指標

となった。移動量としての熱を認識したことで、熱流概念が始まった。しかし、熱と温度

との関係は不明なままだった。 

　18世紀の末に熱流を熱素の流れと解釈した熱学は熱素保存則に基づく解析的熱学の建

設に向かった。 

　19世紀初めに定常熱伝導と非定常熱伝導を研究したフーリエ（Jean Baptiste Joseph 

Fourier、1768-1830年）は『熱の解析理論』を出版した（1822年）。フーリエの議論は

熱素保存則に基づく熱学とは異なる。 

　カルノー（Nicolas Léonard Sadi Carnot、1796-1832年）は『火の動力、および、こ

の動力を発生させるに適した機関についての考察』（以下、『火の動力』と略記）を出版

した（1824年）。この書で導入した原動機の効率は、非平衡定常状態のエネルギー流保

存則を仮定していた。カルノーは「無駄」のない理想的な熱機関（カルノー機関）を想定

し、カルノー機関の効率は高温部と低温部の二つの温度だけで決まることを示した。『火

の動力』の直後に書かれた『覚書』では、カルノーは熱素を明確に否定した。さらに、微

小温度差で作動する微小カルノー機関を想定し、カルノー関数を導入した。 

　カルノーの業績は熱力学史を30年ほど先取りしていた。非平衡定常状態のエネルギー流

保存則は、後に、熱力学第一法則となった。カルノー関数はトムソン（Wil iam 

Thomson、1824-1907年）により絶対温度（あるいは熱力学的温度）となった（1848

年）。クラウジウス（Rudolf Julius Emmanuel Clausius, 1822-88年）はエントロピー流

を導入して熱流と温度との関係を明らかにし、エントロピー流増大則（クラウジウスの不

等式）を提唱した（1854年）。カルノーの「無駄」はエントロピー流増大に対応する。エ

ントロピー流増大則は熱力学第二法則（エントロピー生成密度の値は正または零）の最初

の定式化とされる。 

　この30年間に熱電気現象の研究が進展し、ゼーベック効果（1821年）、オームの法則

（1826年）、ペルティエ効果（1834年）。ジュール発熱（1840年）、トムソン効果

（1854年）と続いた。熱電気現象も非平衡定常状態です。ジュール（James Prescott 

Joule、1818-89年）は熱の仕事当量を通して定常状態のエネルギー流保存則の確立に貢

献した。トムソンは熱電気現象の輸送係数の間に二つの関係式を提唱した。トムソンの第

一関係式は熱電気現象のエネルギー流保存則に相当する。相反関係（reciprocal 
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relations）を根拠とするトムソンの第二関係式（1854年）は熱電気現象のエントロピー

流増大則に相当する。 

　1850年代に展開された気体分子運動論は後に古典統計力学へと進化し、1870年代前半

にはボルツマンの関係式が登場した。 

　クラウジウスが示量性状態量としてのエントロピーを導入した（1865年）ことで、エン

トロピーに関わる移動量と生成量と示量性状態量とが揃った。エネルギー概念もエントロ

ピー流概念も、それぞれ、対応する移動量と生成量と示量性状態量とからなる関係概念で

す。熱力学第一法則はエネルギー生成密度の値がゼロであることを主張する経験則であ

り、熱力学第二法則はエントロピー生成密度の値が正またはゼロことを主張する経験則で

す。 

　クント（August Adolf Eduard Eberhard Kundt、1839-94年）は、ヤング率を推定す

るための道具としてクント管を発明した(1866年）だけで無く、クント管を使って、管内

音波の分散を調べた。キルヒホッフ（Gustav Robert Kirchhoff、1824-87年）は、粘性

と熱伝導を考慮した流体力学的議論で管内音波の分散を議論した。このキルヒホッフ理論

（1868年）はクントの実験結果と良く合った。キルヒホッフ理論では管軸方向の温度勾

配が零です。 

　1870年代のギブズ（Josiah Willard Gibbs、1839-1903年）は、示量性状態量と示強

性状態量との間の多くの関係を平衡曲面の微分幾何学として整理することで、平衡状態の

熱力学を建設した。平衡状態は実験観測が困難ですが、身の回りには局所平衡の仮定が成

り立つ現象が多い。例えば、流体力学は局所平衡の仮定のもとに成り立っている。 

　ネルンスト（Walther Hermann Nernst、1864‒1941年）の熱定理（1906年）によれ

ばエントロピー の温度依存性 は絶対零度に近づくにつれて零に近づく。これが熱力

学の第三法則です。 

　20世紀初頭には熱力学的状態の揺らぎと安定性に関わる議論が進展した。熱力学の経

験則「熱力学的平衡状態にある系が外部から受けたわずかな摂動に対する応答は、自発的

なゆらぎに対する応答と同じである」を認めると、線形応答理論により、平衡状態の安定

性に関わる揺動散逸定理（fluctuation-dissipation theorem）が導き出せる。平衡状態で

の揺らぎ（fluctuation）と散逸（dissipation）との関係を議論する散逸揺動定理にはアイ

ンシュタイン（Albert Einstein、1879-1955年）のブラウン運動（1905年）、ジョンソ

ン（John Bertrand Johnson、1887-1970年）の熱雑音（1926年）などが含まれる。 

S dS /dT
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　局所平衡の仮定が成り立つ安定な非平衡定常状態では、温度勾配や圧力勾配のような熱

力学的力とエントロピー流や物質流のような移動量との間に相反関係が知られている。例

えば熱電気現象の相反関係がある。経験則だった相反関係をオンサーガー（Lars 

Onsager、1903-1976年）は微視的議論で証明した（1931年2月）。この際に使ったのは

揺動散逸定理と力学の詳細釣合い（detailed balance）の原理です。 

　オンサーガーは1931年12月論文で、非平衡定常状態の安定性を議論し、微小揺らぎに

対して安定な定常状態は「エントロピー生成密度が極小」であるとした。このことは最大

仕事、最小発熱、エネルギー散逸極小などの言葉で19世紀末から認識されていたエントロ

ピー生成最小の法則の再発見であり、エントロピー生成最小の法則は非平衡状態の安定性

に関わる熱力学の基本法則です。このオンサーガーの見解をプリゴジン（I l ya 

Prigogine、1917-2003年）は「エントロピー生成極小の定理」と命名した（1947年）。 

　熱音響現象の一つであるタコニス振動を記述理解することを目指したクラマース

（Hendrik Anthony Kramers、1894-1952年）は、キルヒホッフ理論を拡張して、管軸

方向の温度勾配を有限とした（1949年）。クラマースの拡張キルヒホッフ理論では温度

勾配は任意パラメータの一つです。そもそも流体力学的議論では温度勾配の値は決まらな

い。 

　拡張キルヒホッフ理論は解析的には扱い難い。タコニス振動の安定限界を議論したクラ

マース(1949年)も後のロット(1973年)も拡張キルヒホッフ理論を使っわず、扱いやすいキ

ルヒホッフ理論を使って高温部と低温部との解を求め、両者の解が繋がる条件を調べた。 

　20世紀末に始まった熱音響理論は、拡張キルヒホッフ理論を使って、仕事流密度、エン

トロピー流密度、エントロピー生成密度を議論し、熱音響現象の熱力学的理解が進んだ。

この熱音響理論でも管軸方向の温度勾配は任意パラメータの一つだった。このために、熱

音響自励振動のイメージは「始めに温度勾配ありき」だった。 

　熱音響現象は、熱電気現象と同様に、線形の非平衡定常状態です。管軸方向の温度勾配

は温度勾配は、任意パラメータではなく、エントロピー生成最小の法則で決まる。このこ

とは熱音響現自励振動のイメージを変えた。管軸方向のエントロピー流（あるいは熱流）

を与えると熱音響自励振動（原動機）が生じることがある。熱音響自励振動が発生するエ

ントロピー流の大きさには下限がある。 

　このように、実験観察の容易な非平衡定常状態の研究は熱力学の誕生と発展に寄与し続

けた。 
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　熱音響自励振動分岐は散逸構造の一例です。逆に、管内流体を強制的に振動させるとド

リームパイプやヒートポンプなどの現象が発生する。振幅が大きくなるとこの現象が顕著

になる。 
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1.　熱学の基本概念 

1.1.　熱流と温度を区別：ブラック 
　ガリレイ（Galileo Galilei、1564-1642年）の気体温度計（1592年）は最古の温度計と

される。ガリレイの気体温度計は、気体の熱膨張率が大きいことに着目したものだが、大

気圧の影響を受けるので具合が悪かった。 

　18世紀には、大気圧の影響を受けない液体温度計が作られた 。科学機器の製造販売に1

携わったファーレンハイト（D.G.Fahrenheit、1686-1736年）は華氏温度目盛を作って温

度目盛りの標準化を行った。 

　グラスゴーでワット（James Watt、1736-1819年）に出会った（1756年）ブラック

（Joseph Black、1728-99年）はワットが手がけていたニューコメン機関の改良に刺激さ

れた。蒸溜や雪溶けの際には熱流があるが温度は変わらないことに着目したブラックは潜

熱概念に辿り着いた（1761年）。液体の水を加熱し、沸点に到達すると激しく蒸発する

水蒸気を伴うが、水温は沸点に保たれる。蒸発する水蒸気が液体の水から潜熱だけの熱を

運び去る。ブラックの潜熱概念はワットを刺激して分離凝縮器の発明となった。 

　相変化がない場合には加熱すると温度が上がる。この場合には潜熱に対して顕熱と呼

ぶ。例えば、固体を加熱すると、固体の温度が高くなる。加熱中に固体に流れ込んだ熱流

の合計を固体の温度変化で割ると顕熱が得られる。単位質量あたりの顕熱は後の比熱で

す。 

　出たり入ったりする移動量としてイメージされた熱は熱流です。熱流には二種類ある。

一つは熱伝導のように物体の移動を伴わない熱流です。二つ目は相変化や対流のように物

体の移動を伴う熱流です。 

　ブラック以前には一心同体のように見えた温度と熱流の区別が曖昧だったが、ブラック

により、温度と熱流とを区別するようになった。温度や圧力は、平衡状態を特徴付ける指

標であり、後に示強性状態量の一つとなった。熱流は非平衡状態を特徴付ける概念の仲間

です。 

　しかし、「温度と熱流との関係」が判然としない。ブラックは「熱流とは何か、あるい

は、熱流の熱とは何か」との問いに応えていない。 

 高田誠二：温度概念と温度計の歴史、Netsu Sokutei 32 (4)162-168 (2005)1
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1.2.　熱素保存則に基づく熱学 
　18世紀は流体の世紀とも呼ばれる。17世紀の力学の対象は主に質点の運動だったが、

18世紀にはその対象が連続体の運動に拡張された。流体力学の創始者であるベルヌーイ

（Daniel Bernoulli、1700-1782年）やオイラー（Leonhard Euler、1707-1783年）は理

想流体（あるいは完全流体）の運動だけを扱った。 

　密度 の流体が流速 で運動している場合の流体力学の質量保存則は 

	 	 (1.1) 

です。 は質量流密度です。この右辺のゼロは質量が不生不滅であることを意味する。流

体力学では(1.1)を連続の式と呼ぶことが多い。 

　化学反応の質量保存則の発見（1774年）や酸素の命名（1779年）などで近代化学の父

と称されるようになったラヴォアジエ（Antoine-Laurent de Lavoisier、1743-94年）は

熱素を想定し、対流熱伝達を移動する流体と共に熱素が移動すると解釈した。ラヴォア

ジェ著『化学原論』（1789年）の元素表には熱素が載っている。1789年はフランス革命

の年です。 

　こうして、熱素の不生不滅を意味する熱素保存則を基本法則とする熱学が始まった。熱

学では熱流を熱素の流れと認識した。流体力学の質量保存則(1.1)や化学反応の質量保存則

からの類推です。ここに、不生不滅と思われるXが想定されて初めてX流を容認する西洋

思想が見え隠れする。変幻自在、生成流転、色即是空、空即是色に慣れ親しんでいる東洋

思想は、西洋思想と異なり、不生不滅のXを想定しなくてもX流を容認する。 

1.3.　気体の性質：状態方程式 
　トリチェリーの真空（1643年）などを通して17世紀中頃には真空概念が受け容れられ

ていたので、圧力 については、真空の圧力をゼロとして、 が確立していた。 

　圧力 と体積 と温度 との間の関係式である状態方程式は相に依存する。ボイル

（Robert Boyle、1627-1691年）は、気相を対象として、ボイルの法則を提唱した

（1662年）。ボイルの法則は一定温度 の下での気体の体積 が圧力 に反比例するこ

とを主張する経験則です。等温圧縮率 

	 	 (1.2) 

を使うと、ボイルの法則は、 

	  

ρ u
∂ρ
∂t

+ ∇(ρu) = 0

ρu

p p ≥ 0

p V T

T V p ≥ 0

KT ≡ −
1
V ( ∂V

∂p )
T

pKT ≃ 1
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です。 

　空気温度計の作成に携ったアモントン（Guillaume Amontons、1663-1705年）は、18

世紀の初頭に、一定圧力 の下では気体の体積変化 が温度変化 に比例することに気付

いた。後のキャベンディッシュ（Henry Cavendish、1731-1810年）の実験（1777-9

年）では熱膨張率 

	 	 (1.3) 

の値が得られている。 

　18世紀の末に熱気球が出現し、ベルサイユ宮殿でルイ16世やマリー・アントワネット

の前で動物を乗せた熱気球のデモンストレーション飛行が行われた（1783年）。同年12

月にはシャルル（Jacques A.C. Charles、1746-1823年）が水素気球による有人飛行を始

めた。こうして熱気球からガス気球への転換の始まった。 

　ガス気球を研究したシャルルは、1787年頃に、水素ガスの熱膨張率を測定した。ゲイ

リュサック（Joseph L. Gay-Lussac、1778-1850年）は、シャルルの測定データに酸素ガ

スや窒素ガスなどのデータも加えて、「圧力 が一定の場合には気体の体積 の変化 が温

度変化 に比例する」ことを、シャルルの法則として、フランス革命（1789年）後の

1802年に発表した。 

　当時の温度は温度概念も温度目盛りも温度計に使う材料に依存した。気体温度計と液体

温度計は、それぞれ、気体と液体の性質に依存する。温度計の構成材料であるガラスの性

質にも依存する。二つの温度定点の間で気体や液体の熱膨張率が一定との保証も無い。こ

の状況は、絶対温度が確立される1848年まで続いた。 

　当時の温度目盛りを とすると、圧力 と体積 との積 の 依存性は図1.1のようにな

る。 の 依存性は気体の種類に依存するが、低温側に外挿すると、 となる温度

は気体の種類にあまり依存しないように見える。 

　圧力 と体積 と温度 との間の関係式である状態方程式は物質の種類と相に依存する。

ボイルの法則とシャルルの法則とを併せると、気体の状態方程式は 

	 	 (1.4) 

です。温度計の材質や温度目盛りに依存しない普遍的温度概念に基づく絶対温度が存在す

るなら、(1.4)は絶対温度は に近いことを示唆している。 

p dV dT

β ≡
1
V ( ∂V

∂T )
p

p V dV

dT

θ p V pV θ

pV θ pV = 0 θ0

p V θ

pV ∝ θ − θ0

θ − θ0
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　ついでに、2004年3月に観光旅行でヴェエルサイ宮殿を訪ねたが、熱気球やガス気球と

アントワネットやシャルルとの関わりを解説する観光ガイドが見当たらなかった。ヴェル

サイ宮殿の観光客は気体の状態方程式に関心がないと思われていたようだ。 

1.4.　熱素保存則の破綻 

 1.4.1　蒸気機関：ワット 

　ニューコメン機関の改良に努力したワットが気付いたように、蒸気機関では高温部と低

温部という二つの温度が必要不可欠です。実際、低温部を分離凝縮器（あるいは復水器）

とすることで燃料効率が上がった（1765年）。高温部から流入した熱流が低温部へ流出

するとともに、蒸気機関は外界に仕事をする。ワットは蒸気機関の能力を後の 仕事（図

示仕事）で評価した 。 2

　熱素保存則に基づく熱学はその研究対象から蒸気機関を除外していた。蒸気機関の出力

仕事は、熱素とは無関係なので、熱素保存則に基づく熱学で議論することが困難だからで

す。 

pV

 山本義隆著『熱学思想の史的展開ー熱とエントロピーー』（現代数学社、1987）2
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pV

θ
0θ0

図1.1 気体の状態方程式：３種類の気体による実験結果を直線で
近似すると3本の実線が得られる。実験結果の直線を低温側に外挿
すると、 になる温度 は気体の種類に依存しないように見え
る。経験則 は気体の状態方程式です。 は絶対温度
を示唆する。

pV = 0 θ0
pV ∝ θ − θ0 θ − θ0



　1.4.2.　摩擦熱：ランフォード伯トンプソン 

　ランフォード伯ベンジャミン・トンプソン（Benjamin Thompson, Count Rumford、

1753-1814年）は、「摩擦熱の発生源に関わる実験による考察」”An Experimental 

Enquiry Concerning the Source of the Heat which is Excited by Friction”（1798年）

で、摩擦熱の熱運動説を提唱した。この論文は大砲の砲身を削る工程で大量の熱が発生す

る実験（1796年、1797年）と削りカスの比熱測定とに基づいている。元素の仲間として

の熱素には不生不滅あるいは生成消滅が滅多に生じないことが前提とされているので、ラ

ンフォード伯が熱素説を放棄したのは当然です。 

　ファラデー（Michael Faraday、1791-1867年）を見出した化学者デービー

（Humphry Davy、1778-1829年）やヤング率に名を遺したトマス・ヤング（Thomas 

Young、1773-1829年）らはランフォードの熱運動説を支持したが、熱素保存則に基づく

熱学がランフォードの死（1814年）以後も生き延びた。熱素保存則に基づく熱学は蒸気

機関だけでなく摩擦熱をも熱学の研究対象から除外したのです。 

　1.4.3.　熱伝導：フーリエ 

　熱伝導を研究したフーリエ（Jean B. J. Fourier、1768-1830年）は、第一論文（1807

年）で、熱伝導による熱流密度 

	 	 (1.5) 

と温度 の時間依存性 との関係 

	 	 (1.6) 

とを認識した。ここで、 は熱伝導度であり、 は単位体積あたりの定圧熱容量です。 

　(1.5)と(1.6)とは因果関係ではない。熱伝導による熱流密度 と温度勾配 との関係

(1.5)はどちらかが原因でどちらかが結果ということでもない。温度変化 と熱流密度

の湧き出し との関係(1.6)もどちらかが原因でどちらかが結果ということでもない。 

　(1.5)と(1.6)から偏微分方程式 

	 	 (1.7) 

が得られる。ここで 

	  

は熱拡散係数です。(1.7)の形の偏微分方程式は、後に、拡散方程式あるいはフーリエ方程

式と呼ばれるようになった。フーリエはフーリエ方程式を解くためにフーリエ級数を導入

した。 

Q̃ κ = − κ ∇T

T ∂T /∂t

ρCp
∂T
∂t

+ ∇ Q̃ κ = 0

κ ρCp

Q̃ κ ∇T

∂T /∂t

∇ Q̃ κ

∂T
∂t

− α ∇2T = 0

α ≡
κ

ρCp
> 0
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　フーリエの第一論文（1807年）は、熱素保存則に基づく熱学との関係が曖昧なことと

フーリエ級数による数学的取り扱いの妥当性とが問題視され、フランス学士院の論文誌に

掲載されなかった。しかし、その重要性により、フランス学士院は1812年度懸賞論文の

テーマを「熱の解析理論」とした。 

　この懸賞論文に応募したフーリエは、経験則(1.5)は熱素保存則とは関わりないこと、

(1.7)が実験結果と矛盾しないことなどを示した。熱素保存則に基づく熱の解析理論を期待

していたフランス学士院にとってはいずれも期待外れであり、フランス学士院の論文誌に

は掲載されなかった。 

　 

　エルステッド（Hans C. Ørsted、1777-1851年）による電流の磁気作用（1820年）の

発見が端緒となり、アンペール（André-Marie Ampère、1775-1836年）やファラデー

（Michael Faraday、1791-1867年）による電磁気現象の研究が始まった。 

　電磁気現象の研究が驚異的に進展したこの期間にフーリエ著『熱の解析理論』（1822

年）が出版された。フーリエ級数やフーリエ変換の重要性により、数学史上の重要文献で

もある。この書は、日本では、金沢工業大学に所蔵されている。 

　フーリエの論文がフランス学士院の論文誌に掲載されたの『熱の解析理論』（1822

年）出版後の1824年と1826年のことだった。権威主義は保守の象徴です。　 

- /  -14 154



2.　カルノー 
　フーリエ著『熱の解析理論』（1822年）出版の二年後にカルノー（Nicolas Léonard 

Sadi Carnot、1796-1832年）は『火の動力、および、この動力を発生させるに適した機

関についての考察』（以下、『火の動力』と略記）を出版した（1824年）。 

　『火の動力』は出版直後に技術者ジラールによりフランス学士院で紹介された。その場

にはラプラス、ゲイーリュサック、ポアソン、ナヴィエなど、当時のフランス学士院の大

御所が多数出席していたとされる。しかし、『火の動力』は完全に無視された。当時の学

会の花形は熱素保存則に基づく解析的熱学の建設と電磁気学の研究だったので、熱学の研

究対象に含まれていない蒸気機関に関わる研究が無視されたのは当然でしょう。 

　『火の動力』執筆直後に書かれた『覚書』 では、『火の動力』よりも表現が具体的に3

なっている。 

　カルノーは、1819年に他界したワットと同様に、蒸気機関では二つの温度が必要と認

識し、高温部（ボイラー）から流入する熱流 が低温部（凝縮器）から流出する熱流

になるとともに、蒸気機関から外界に流出する仕事流 を認めた（図1.2）。同

時刻に同じ場所で異なる温度はあり得ないので、低温部と高温部は空間的に離れている。 

QH > 0

QC > 0 I > 0

 カルノー 著、広重徹・訳と解説 訳『カルノー・熱機関の研究』（みすず書房、19733

年、新版2020年）に『火の動力』と『覚書』の和訳がある。
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QH

QC

I蒸気機関

θH

θC

図1 .2　蒸気機関のイ
メージ：蒸気機関には温
度 の 高 温 源 と 温 度

の低温源とが必
要。高温源から蒸気機関
に の熱が流れ込
み、蒸気機関からは

の熱が流出すると
ともに の出力仕事
がある。

θH

θC < θH

QH > 0

QC > 0

I > 0



　この熱流は、必ずしも熱素の流れとは限らない。『覚書』では熱素保存則を明確に否定

している。カルノーの熱流は「熱素とは異なる何か」の流れです。出力仕事は仕事流 で

す。 

2.1.　熱の動力としての効率 
　蒸気機関は水蒸気を作業流体とする原動機です。水蒸気以外の作業流体にも使えるよう

に今後は、蒸気機関の代わりに、原動機と呼ぶことにする。 

　『火の動力』のテーマは、熱の動力としての効率です。カルノーの議論は熱の動力とし

ての効率 

	 	 (2.1) 

を導入することから始まった。原動機の効率 は比 で決まる。 

　カルノーによる効率の定義式(2.1)の最初の等号は、定常状態のエネルギー流保存則を暗

示している。「熱素とは異なる何か」をエネルギーと呼ぶこととし、出入りする熱や出力

仕事を出入りするエネルギーの仲間とするなら、原動機に流入したエネルギー と原動

機から流出したエネルギー とは等しいとする定常状態のエネルギー流保存則 

	  

を意味する。 

2.2.　カルノー機関 
　次にカルノーは「無駄」の無い理想的な原動機（カルノー機関と略記）を想定した。カ

ルノー機関の効率をカルノー効率 とする。「無駄」のある原動機の効率 はカルノー効

率 を越えることがない： 

	  

　カルノー機関は理想的なので、カルノー効率 は、原動機の作業流体にも蒸気機関の構

成機材にも依らず、低温部と高温部の二つの温度（ と ）だけで決まる。つまりカル

ノー機関では 

	 	  

も二つの温度（ と ）だけで決まる。 

　カルノーの頃には普遍的な温度概念も温度目盛りも存在しない。この温度 は勝手な温

度計による勝手な温度目盛り（華氏温度目盛りや摂氏温度目盛り）での指示温度です。 

I

η ≡
I

QH
=

QH − QC

QH
= 1 −

QC

QH
≥ 0

η QC /QH

QH

I + QC

QH = I + QC

ηcal η

ηcal

0 ≤ η ≤ ηcal

ηcal

θH θC

QC

QH
= 1 − ηcal(θH, θC)

θH θC

θ
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2.3.　微小カルノー機関 
　カルノーが三番目に導入したのは微小温度差 で動作している微小カルノー機関で

す。微小温度差 を導入したことは、勝手な温度 の異なる二つの場所が前提となる。つ

まり、 は位置座標の関数です。『覚書』にはカルノー機関を多数の微小カルノー機関の直

列接続とするアイデアも紹介されている。 

　微小カルノー機関も理想的なので、 は温度 だけの関数です。温度 は位置座標の関

数なので、 は を経由して、位置座標の関数です。微小温度差 の微小カルノー機関

を想定し 

	  

すなわち 

	  

とする。全微分は、 が だけに依存することを表しているので、微小カルノー機関が理想

的なことの数式表現です。 

　長さ の微小カルノー機関の効率は 

	  

なので、微小カルノー機関の温度差 が充分小さい場合には、 

	 	  

すなわち 

	 	 (2.2) 

です。 

　微小カルノー機関の長さ に着目すると、微小カルノー機関が充分短い場合には 

	  

なので、微小カルノー機関の効率は、 

	  

です。 

2.4.　カルノー関数 
　カルノーが最後に導入したのは勝手な温度 の関数であるカルノー関数 

	  

です。微小カルノー機関に関わる(2.2)は無次元量なので、 

Δθ > 0

Δθ θ

θ

Q(θ ) θ θ

Q(θ ) θ Δθ

ΔQ ≡ Q(θ + Δθ ) − Q(θ ) ≥ 0

Δ Q̃ ≡
dQ
dθ

Δθ ≥ 0

Q̃ θ

Δz

ζcalΔz ≡ ηcal(θ + Δθ, θ ) =
ΔQ

Q(θ + Δθ )
Δθ > 0

ζcalΔz ≡
ΔQ
Q

≥ 0

ζcalΔz ≡
1
Q

dQ
dθ

Δθ ≥ 0

Δz > 0

ΔQ = ∇QΔz

ζcalΔz ≡
∇Q
Q

Δz ≥ 0

θ

Tcal(θ ) ≥ 0
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	 	 (2.3) 

となるように、[温度]の次元をもつカルノー関数 を導入する。勝手な温度 が位置座

標の関数なので、カルノー関数 も位置座標の関数です。(2.3)によれば、

の場合には です。 

　 と だけでなくカルノー関数 も勝手な温度 の関数です。三者の関係

は、(2.3)により、 

	 	 (2.4) 

です。(2.4)は、熱流 とカルノー関数 との関係であり、勝手な温度 を媒介変数

としている。 

　(2.2)によれば、微小温度差 の微小カルノー関数の効率は 

	  

です。 

　「無駄」のない理想的な原動機として導入されたカルノー機関の効率は二つの勝手な温

度（ と ）だけで決まり、 

	  

に注意すると、カルノー機関では 

	 	 (2.4) 

は勝手な温度 に依らない。 

　「無駄」が有限な一般の原動機では 

	  

なので、 も温度 に依損し、「無駄」の大きさは 

	 	 (2.5) 

に比例する。 

　『火の動力』と『覚書』は後の熱力学を30年程先取りした。効率の定義が熱力学第一

法則を先取りしていただけではない。カルノーをまともに評価したトムソン（Wiliam 

Thomson、1824-1907年）はカルノー関数 を絶対温度（あるいは熱力学的温度）

とした（1848年）。クラウジウス（Rudolf Julius Emmanuel Clausius、1822-88年）

は、エントロピー流 を導入し、エントロピー流密度 を使ってクラウジウスの

不等式 

Tcal(θ )
Q(θ )

dQ
dθ

= 1

Tcal(θ ) θ

Tcal(θ ) ≥ 0 Q(θ ) ≠ 0

Tcal(θ ) ≠ 0

Q(θ ) dQ /dθ Tcal(θ ) ≥ 0 θ

Q(θ )
Tcal(θ )

=
dQ
dθ

≥ 0

Q(θ ) Tcal(θ ) θ

Δθ

ζcalΔz =
Δθ
Tcal

θH θC

ηcal = 1 −
Q(θC)
Q(θH)

Q(θ )
Tcal(θ )

=
dQ
dθ

≥ 0

θ

Q(θC)
Tcal(θC)

>
Q(θH)

Tcal(θH)
dQ /dθ θ

QC

Tcal(θC)
−

QH

Tcal(θH)
≥ 0

Tcal(θ ) T

Q /Tcal = Q /T S̃
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を提案した（1854年）。この不等式は熱力学第二法則の最初の定式化とされる。

はカルノーの「無駄」の大きさ(2.5)に対応する。 

　因みに、カルノーの後継者となったクラウジウスとトムソンとは、それぞれ、フーリエ

著『熱の解析理論』が出版された1822年とカルノー著『火の動力』が出版された1824年

に生誕した。 

∇ S̃ ≥ 0

∇ S̃ ≥ 0
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3.　熱電気現象：エネルギー流保存則 
　カルノーが受け容れられるのに要した30年ほどの熟成期間中に熱電気現象の研究が始

まった。この章では温度を記号 で表現するが、勝手な温度 を意味する。 

3.1.　ゼーベック効果 
　ゼーベック（Thomas J. Seebeck、1770-1831年）によれば、二種類の導体を接続して

輪を作り、二つの接続点を異なる温度にすると、この輪の近くに置いた方位磁針が振れ

た。ゼーベックはこの現象を熱の磁気作用と命名した（1821年）。エルステッドの電流

の磁気作用（1820年）になぞらえた命名でしょう。この輪を断ち切ると両端に電位差が

生じた。熱の磁気作用は後にゼーベック効果と呼ばれるようになった。 

　熱電対でなじみのゼーベック効果は熱電気現象という非平衡定常状態に関わる最初の報

告です。簡単のために、線状導体を想定し、温度勾配が正（ ）となるように、導

体中の座標軸の正方向を選ぶと、ゼーベック効果は温度勾配 に比例する熱起電力（あ

るいはゼーベック起電力） 

	 	 (3.1) 

が存在することを意味する。 は導線に沿う偏微分です。[電位]/[温度]の次元をもつ比例

係数 はゼーベック係数と呼ばれている。熱起電力の添え字 とゼーベック係数 は発見者

ゼーベック（Seebeck）の頭文字Sに因む。ゼーベック係数 の値は導体の種類と温度 に

依存する。 

3.2.　オームの法則 
　フーリエ著『熱の解析理論』（1822年）によれば熱伝導による熱流密度は温度勾配に

比例する： 

	 	 (1.5) 

このことに刺激されたオーム（Georg S. Ohm、1789-1854年）は、実験に基づいて、

オームの法則を発表した（1826年）。オームがこの実験で使った電源は熱電堆だった。

熱電堆はゼーベック起電力の応用としての単電池を直列接続したものです。熱起電力を応

用した熱電堆は化学的知識を要求されるボルタの電堆よりも製作と保守が容易だったので

す。 

T θ

∇||T > 0

∇||T

EΣ ≡ Σ∇||T

∇||

Σ Σ Σ

Σ T

Q̃ κ = − κ ∇T
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　オームの法則によれば、一様温度（ ）の線状導体では起電力 （あるいは電位

勾配）と電流密度 とは比例する： 

	 	 (3.2) 

(3.2)の比例係数 は導線の電気抵抗です。経験によれば です。起電力の添え字と電気

抵抗の は発見者オーム(Ohm)の頭文字Ｏに因む。(3.2)も非平衡定常状態での関係式です。 

　エルステッドによる電流の磁気作用の発見（1820年）後に電磁気現象の研究が目覚ま

しく発展していたので、電流密度 に違和感が無い。オームは電気抵抗の単位オームΩに名

を遺した。 

　導体中の電場 は電流密度 に比例する起電力 と温度勾配 に比例するゼーベック起

電力 との和です： 

	 	 (3.3) 

　余談ですが、フーリエ著『熱の解析理論』（1822年）に刺激されたオームはフーリエ

級数も受け容れて、「持続音の音色は高調波の合成によって構成されていて、耳にはフー

リエ分解の能力がある」という説を提唱した（1843年）。この提唱はオームの音響法則

（Ohm’s acoustic law）と呼ばれている。 

3.3.　ペルティエ効果 
　熱流を移動量と見做して、熱流密度を と表記する。 も位置座標の関数です。 

　線状導体中の熱流密度は、電流がない（ ）場合には、熱伝導による熱流密度 

	  

だけです。ここで は導線に沿う偏微分です。比例係数 は導体の熱伝導度です。経験に

よれば です。 

　ペルティエ（J.C.Peltier、1785-1845年）によれば、二種類の導体を直列接続して電流

を流すと、一様温度（ ）でも、異種導体の接続点で電流密度 に比例する吸放熱が

生じる（1834年）。この現象は、発見者ペルティエに因んで、ペルティエ効果と呼ばれて

いる。ペルティエ効果による熱流密度は 

	 	 (3.4) 

です。比例係数 はペルティエ係数と呼ばれる。ペルティエ係数 の次元は[電位]です。ペ

ルティエ係数 の値は導体の種類と温度とに依存する。熱流密度の添え字 とペルティエ

∇T = 0 EΩ

j̃

EΩ = Ω j̃

Ω Ω ≥ 0

Ω

j̃

E j̃ EΩ ∇T

EΣ

E = EΩ + EΣ

Q̃ Q̃

j̃ = 0

Q̃ κ ≡ − κ ∇||T

∇|| κ

κ ≥ 0

∇T = 0 j̃

Q̃ Π ≡ Π j̃

Π Π

Π Π
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係数 はペルティエ効果の発見者ペルティエ（Peltier）の頭文字Pに因む。(3.4)も非平衡

定常状態での関係式です。 

　ペルティエ効果による吸放熱は二種類の導体の接続点で生じる。なお、ペルティエ効果

を応用したペルティエ冷凍機は、動作が静かなので、現代では病院やホテルのベッドサイ

ドで使われている。 

　導体中の熱流密度 は電流密度 に比例する と温度勾配 に比例する との和で

す： 

	 	 (3.5) 

です。	  

3.4.　ジュール発熱 
　19世紀に生まれたジュール（James P. Joule、1818-89年）は自作したボルタの電池を

使って自作の電動モーターを駆動しているうちに、電流密度の2乗に比例するジュール発

熱密度 

	 	 (3.6) 

に気付いた（1840年）。添え字 はジュール発熱の発見者ジュールの頭文字に因む。

ジュール発熱も非平衡定常状態に関わる現象です。ジュール発熱も を支持している。

(3.6)によればジュール発熱は電流密度 の向きに依らない。ジュール発熱密度 の単位は

[ボルトアンペア]/[体積]です。 

　熱素保存則に拘らないジュールは、ジュール発熱を電気エネルギーが熱エネルギーに変

換された結果と解釈した。ジュール発熱による水などの温度上昇からも発熱量 を求め

た。この場合の の単位は[カロリー/秒]/[体積]です。 

　その後のジュールは、還暦（1878年）迄、熱の仕事当量の研究を続けた。ジュールによ

る熱の仕事当量の実験では、電気的仕事に限らず力学的仕事でも熱の仕事当量を測定し、

後の非平衡定常状態のエネルギー流保存則 

	 	 (3.7) 

を支持し続けた。定常状態のエネルギー流保存則の確立に寄与した功績でジュールはエネ

ルギーの単位ジュールJに名を遺した。 

Π

Q̃ j Q̃ Π ∇T Q̃ κ

Q̃ = Q̃ Π + Q̃ κ

j

·qJ ≡ EΩ j̃ = Ω j̃ 2 ≥ 0

J

Ω ≥ 0

j̃ ·qJ

·q

·q

∇ Ũ = 0
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　栄養学の分野ではエネルギーの単位として現在でもカロリーが使われている。カロリー

には大カロリーと小カロリーとがあり紛らわしい。熱素保存則に基づく熱学の絶頂期

1824年に「水1kgの温度を0°Cから1°Cに上げるのに必要な熱量」をカロリーと名づけ

た。これが大カロリーCalの始まりです。カロリーという言葉に熱素説の匂いが伴うのは

当然です。後に「水1gの温度を0°Cから1°Cに上げるのに必要な熱量」をサーミー

（thermie）と名づけ（1888年）、1896年にカロリーと改称した。これが小カロリーcal

の始まりです。1999年10月以降はジュールJを基本単位として1cal  4.184Jです。 

3.5.　トムソンの悩み 
　1840年代のトムソンは、熱の仕事当量に関わるジュールの測定結果を高く評価した

が、ジュール発熱の解釈「電気エネルギーが熱エネルギーに変換される」とのイメージに

は懐疑的だった。その原因は次に述べるトムソンの二つの悩みにある。 

　仕事流密度 と熱流密度 にはエネルギー流密度という共通点があるが、両者の違いは

何なのか？　名前を使い分けているのは何かが違うことを意味するが、何が違うのかが判

らない。これがトムソンの第一の悩みです。 

　摩擦熱では投入仕事を全て熱に変換することが出来るが、カルノーが示したように、カ

ルノー機関ですら出力仕事に変換出来るのは高温部から流入した熱流の一部分に過ぎな

い。トムソンの第二の悩みは「仕事流と熱流との相互変換の非対称性の所以は何か？」で

す。 

　トムソンの悩みは後にクラウジウスによるエントロピー流の導入（1854年）で解消さ

れた。このことについては「6.　エントロピー流増大則：クラウジウスとトムソン」で述

べる。 

3.6.　トムソン効果とトムソンの第一関係式 
　19世紀前半の時代思想は、熱流と仕事流とにエネルギー流という共通点を認識し、エ

ネルギー流密度 

	  

を認めただけではなく、非平衡定常状態のエネルギー流保存則 

	 	 (3.7) 

を受け容れた。(3.7)は後の熱力学第一法則の最初の定式化です。 

≡

Ĩ Q̃

Ũ ≡ Q̃ + Ĩ

∇ Ũ = 0
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　熱流密度 と仕事流密度 とエネルギー流密度 は、状態量ではなくて、全て移動量で

す。熱流密度 と仕事流密度 を合わせたエネルギー流密度 については上流と下流とで

違いが無い（ ）。例えば、定常動作している原動機では、 かつ と

いうことは無い。『火の動力』（1824年）で蒸気機関の効率を導入したカルノーは、当

然のこととして、非平衡定常状態のエネルギー流保存則(3.7)を使っていた。 

　トムソンは、熱電気現象に定常状態のエネルギー流保存則(3.7)を適用することで、トム

ソンの第一関係式を発見した（1854年）。トムソンが絶対温度を確立したのは1848年の

ことだから、1848年以降の議論では は絶対温度です。 

　熱電気現象に定常状態のエネルギー保存則(3.7)を適用してみよう。 

　線状導体を想定して を電線に沿う微分 と電線の径方向微分 とに分けると 

	  

なので、熱電気現象の放熱量密度は 

	  

です。ここで 

	  

に注意すると、熱電気現象の放熱量密度は 

	 	 (3.8) 

です。 

　熱電気現象の放熱量密度(3.8)の右辺を調べよう。 

　先ず、熱電気現象の仕事流密度の湧き出し については、 なので、 

　	  

だけです。導線に沿う電場 

	 	 (3.3) 

にゼーベック効果 

	 	 (3.1) 

とオームの法則 

	 	 (3.2) 

とを使うと 

Q̃ Ĩ Ũ

Q̃ Ĩ Ũ

∇ Ũ = 0 ∇ Q̃ = 0 ∇ Ĩ ≠ 0

T

∇ ∇|| ∇r

∇ Ũ = ∇r Ũ + ∇|| Ũ

·q ≡ ∇r Ũ = − ∇|| Ũ

∇|| Ũ = ∇|| Ĩ + ∇|| Q̃

·q = − (∇|| Ĩ + ∇|| Q̃ )

∇|| Ĩ ∇r Ĩ = 0

∇|| Ĩ = − Ej̃

E = EΩ + EΣ

EΣ ≡ Σ∇||T

EΩ = Ω j̃
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なので、仕事流密度の湧き出しは 

	  

すなわち 

	 	 (3.9) 

です。(3.9)ではジュール発熱 

	 	 (3.6) 

を使った。 

　次に、熱流密度 

	 	 (3.5) 

の湧き出し については、熱伝導による熱流密度 

	 	 (1.5) 

が一様（ ）であることを使うと、 

	  

です。ペルティエ効果 

	 	 (3.4) 

と電流の連続性（ ）を使うと、 

	  

なので、 

	 	 (3.10) 

です。 

　熱電気現象の放熱量密度(3.8)の右辺に(3.9)と(3.10)とを使うと 

	 	 (3.11) 

です。ここで 

	 	 (3.12) 

は非平衡定常状態のエネルギー流保存則(3.7)の顕れです。 はトムソン係数と呼ばれてい

る。トムソン係数 とペルティエ係数 とゼーベック係数 との間の関係式(3.12)は、発見

者トムソンに因んで、トムソンの第一関係式と呼ばれている。 

　(3.11)によれば、電流が流れている（ ）導線では、ジュール発熱 以外の発熱 

	  

E = Ω j̃ + Σ∇||T

∇|| Ĩ = − (Ω j̃ + Σ∇||T) j

∇|| Ĩ = − ·qJ − Σ j̃ ∇||T

·qJ ≡ EΩ j̃ = Ω j̃ 2 ≥ 0

Q̃ = Q̃ κ + Q̃ Π

∇|| Q̃

Q̃ κ ≡ − κ ∇||T

∇|| Q̃ κ = 0

∇|| Q̃ = ∇|| Q̃ Π

Q̃ Π ≡ Π j̃

∇|| j = 0

∇|| Q̃ Π = j̃
∂Π
∂T

∇||T

∇|| Q̃ = j̃
∂Π
∂T

∇||T

·q = − ∇|| Ũ = ·qJ + Θj̃ ∇||T

Θ ≡
∂Π
∂T

− Σ

Θ

Θ Π Σ

j̃ ≠ 0 ·qJ ≥ 0

Θj̃ ∇||T
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も存在する。 は正とは限らない。このことはトムソン効果と呼ばれている。(3.11)

の右辺第一項 はジュール発熱なので、ジュール発熱を使った熱の仕事当量の実験

は、トムソン効果が影響しないように、一様温度（ ）で行われることが必要で

す。 

　熱電気現象の放熱密度 は正とは限らない。(3.11)によれば、 

	  

です。つまり、放熱密度 は電流密度 の2次式であり、 となるのは 

	  

の場合と 

	  

の場合だけです。後者の電流密度の値と と とから を推定することが出来る。 

　 の場合には 

	  

で になる。 の場合には 

	  

で になる。 

　したがって、放熱密度 が最小となる電流密度 

	  

の値と と とから を推定することも出来る。 

　トムソンは、実験により、トムソン係数 を推定した。鉛以外の金属や半金属ではトム

ソン係数 が正の物もあるし負の物もあった。鉛では だった。 

　トムソン係数 の実測には、他の基準導体が不要です。このことは他の基準導体と組み

合わせないと実測出来ないゼーベック係数 やペルティエ係数 とは異なるトムソン係数

の特徴です。なお、現代では、 とされる超伝導体を基準導体とすることで、 や

を測定することが可能です。 

Θj̃ ∇||T

·qJ ≥ 0

∇||T = 0

·q

·q = ρ j̃ (j̃ +
Θ
Ω

∇||T)
·q j̃ ·q = 0

j̃ = 0

j̃ = −
Θ
Ω

∇||T

Ω ∇||T Θ

Θ > 0

−
Θ
Ω

∇||T < j̃ < 0

·q < 0 Θ < 0

0 < j̃ < −
Θ
Ω

∇||T

·q < 0

·q

j̃ = −
1
2

Θ
Ω

∇||T

Ω ∇||T Θ

Θ

Θ Θ ≃ 0

Θ

Σ Π Θ

Σ = Π = 0 Σ

Π
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4.　絶対温度：トムソン 
　ジュール発熱（1840年）当時の温度は気体や液体などの熱膨張を利用するものであ

り、物体に依存する熱膨張率とその温度依存性により、温度概念も温度の値 も実験に

使った温度計に依存していた。 

　温度計に使う材料や温度定点などに依らない普遍的温度を絶対温度と呼ぶ。絶対温度を

捜し求めていたトムソンは、1848年に、絶対温度の概念とその温度目盛りを導入した。 

　トムソンはカルノー著『火の動力』と『覚書』とをまともに理解したに相違ない。トム

ソンが導入した絶対温度 は微小カルノー機関の議論に現れたカルノー関数 の値

に比例する。カルノー関数 は勝手な温度計の指示温度 の関数なので、カルノー関数

の関数形も様々で温度計に依存するが、絶対温度は の値に比例する。 

　絶対温度 には圧力 と同様に下限が存在し、絶対温度 の下限はゼロです。絶対温度の

目盛りには摂氏零度を273.15Kとする摂氏温度目盛りを採用した。現在では水の三重点を

273.15Kとする。Kは絶対温度の単位ケルビンです。 

　絶対温度 は、周知の関係式に使われている。まず、カルノー機関では 

	 	 (2.4) 

は勝手な温度 に依らないので 

	  

に注意すると、絶対温度 を使うと 

	 	 (4.1) 

となる。従って、一般の熱機関では、 

	 	  

となる。 

　また、絶対温度 が確立されたので、希薄気体の状態方程式は、良い近似で、 

	 	 (4.2) 

です。気体定数 は物質に依存する。状態方程式が となるような気体が（古典的）

理想気体です。（古典的）理想気体では 

	 　と　  

とが成り立つ。 

θ

T Tcal(θ ) ≥ 0

Tcal(θ ) θ

Tcal(θ ) Tcal(θ ) ≥ 0

T p T

T
Q(θ )

Tcal(θ )
=

dQ
dθ

≥ 0

θ

ηcal = 1 −
Q(θC)
Q(θH)

T

ηcal = 1 −
TC

TH

η ≤ 1 − ηcal

T

pV ≃ RT

R pV = RT

pKT = 1 βT = 1
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　周知の(4.1)と(4.2)は、数式表現は初等的ですが、物理的には高級です。絶対温度（ある

いは熱力学的温度） をまともに理解していることが前提とされるからです。 

　概念としての絶対温度を導入しても、絶対温度 の実現は容易ではない。この世に存在

しないカルノー機関を議論するために導入したカルノー関数 を絶対温度と結びつけ

たし、（古典的）理想気体も実在しないからです。トムソンは、気体温度計を主とし、気

体温度計の指示値をジュールト・ムソン効果で補正しながら、絶対温度の実現に向けて努

力した。 

　この功績により、トムソンはケルビン郷となった（1892年）。ケルビン郷のケルビン

はトムソンが研究生活を行ったグラスゴー市にあるケルビン川の名に因む。ケルビン郷ト

ムソンは絶対温度の単位ケルビンKに名を遺した。ワット、ブラック、トムソンの３人は

グラスゴーと関わりがある。 

　なお、生活習慣として華氏温度目盛に慣れている地方や機械工学では、華氏温度目盛に

基づく絶対温度の単位ランキン°Rが使われることがある。ランキン単位の絶対温度をケル

ビン単位に換算するには5/9を乗じれば良い。ランキン温度目盛はランキン（William 

John Macquorn Rankine、1820-1872年）が1859年に提案した温度目盛りです。 

　今後は絶対温度 を温度と呼ぶ。 

T

T

Tcal(θ )

T
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5.　熱力学第一法則：熱力学のエネルギー保存則 
　破綻した熱素保存則の替わりに提唱されたのが、熱力学のエネルギー保存則です。 

　1840年代に多くの科学者が様々な表現でエネルギー保存則を提唱した。その一つが、

カルノー以来の非平衡定常状態のエネルギー流保存則 

	 	 (3.7) 

すなわち 

	  

です。従って、非平衡定常状態では熱流密度の湧き出しは仕事流密度の吸い込みに等し

い： 

	 	 (5.1) 

このことは熱の仕事当量に対応する。 

　非平衡定常状態のエネルギー流保存則(5.1)を原動機を含む閉空間で積分すると、閉空間

の表面から流出する全仕事流は流入する全熱流に等しい。閉空間の表面の微小面積を

とすると、原動機の高温部からの流入熱 は 

	  

低温部からの流出熱 は 

	  

出力仕事は 

	  

なので、非平衡定常状態のエネルギー保存則は 

	  

つまり 

	  

です。 

　ゼーベック効果が発見された1821年に生まれたヘルムホルツ（Hermann Ludwig 

Ferdinand von Helmholtz、1821-1894年）はベルリン物理学会で論文『力の保存につい

て』を発表した（1847年）。ヘルムホルツの1847年論文で新しい示量性状態量 が導入

された。 は力学の運動エネルギーや位置エネルギーとは別に、物体内部に存在するエネ

∇ Ũ = 0

∇ Q̃ + ∇ Ĩ = 0

∇ Q̃ = − ∇ Ĩ

d A

QH

QH = − ∫ ∫ Q̃ Hd A

QC

QC = ∫ ∫ Q̃ Cd A

I = ∫ ∫ Ĩ d A

∫ ∫ ( Ĩ + Q̃ C) d A = − ∫ ∫ Q̃ Hd A

∫ ∫ ( Q̃ H + Ĩ + Q̃ C) d A = 0

U

U
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ルギーを想定したものであり、（内部）エネルギーと命名された。（内部）エネルギー

は示量性状態量です。 

　単位質量あたりの体積を とすると、熱力学のエネルギー保存則は、閉鎖系では 

	 	 (5.2) 

です。ここで閉鎖系とは質量の出入りは無いが熱流や仕事流は出入りする系です。特に、

定常状態では なので(3.7)となる。すなわち、非平衡定常状態のエネルギー流保

存則(3.7)を非定常状態に拡張したのが熱力学のエネルギー保存則(5.2)です。 

　熱力学のエネルギー保存則(5.2)には温度概念が使われていない。温度概念が使われてい

ないので、絶対温度の概念が確立される前に熱力学のエネルギー保存則(5.2)が提案できた

のだろう。 

　クラウジウスは1850年論文で、熱力学のエネルギー保存則について二種類の言及をして

いる。その一つは 

「熱の作用によって仕事が生み出されるすべての場合に、その仕事に比例した

量の熱が消費され、逆に、仕事の消費においては同量の熱が生成される。」 

です。熱や仕事の消費という意味不明瞭な言葉を使っているが、この前半は原動機に関わ

り、後半はヒートポンプや摩擦熱に関わり、(5.1)と同じです。もう一つの言及は 

「熱力学的過程において、閉鎖系の（内部）エネルギーの増大 は、閉鎖系に

蓄積される熱量 とその系がする仕事 との差に等しい。」 

です。 はヘルムホルツが導入した示量性状態量の増可分ですが、 と は必ずしも示

量性状態量の増加分ではない。 

　クラウジウスの第二の言及によれば、熱力学のエネルギー保存則の数式表現は、単位質

量の閉鎖系では、 

	  

です。ここでは、閉鎖系に蓄積される熱量の微小変化を と表記し、この閉鎖系が外界に

行う微小仕事を と表記した。このままでは(5.2)との関係が判りにくい。 

　この微小変化に要する時間 を考慮すると 

	 	  

です。熱流密度 や仕事流密度 との関係は、それぞれ、 

	  

U

V
1
V

∂U
∂t

+ ∇ Ũ = 0

∂U/∂t = 0

δU

δQ δW

δU δQ δW

δU = δQ − δW

δQ

δW

δt
δU
δt

=
δQ
δt

−
δW
δt

Q̃ Ĩ
1
V

lim
δt→0

δQ
δt

= − ∇ Q̃
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と 

	  

なので、熱力学のエネルギー保存則は 

	 	 (5.2) 

となる。 

　因みに、 

	  

を使うと、断熱変化は を意味する。 

　熱力学のエネルギー概念は、移動量としてのエネルギーすなわちエネルギー流密度 と

単位体積当たりの示量性状態量としてのエネルギー すなわちエネルギー密度 と生成

量としてのエネルギーすなわちエネルギー生成密度 との関係概念 

	 	 (5.3) 

です。示量性状態量としてのエネルギー の絶対値は不定です。重要なのはその時間変化

です。エネルギー概念の中で最初に見いだされたのがエネルギー流密度 

	  

です。次に見いだされたのが定常状態のエネルギー流保存則 

	 	 (3.7) 

です。いずれも、非平衡定常状態の研究の成果です。示量性状態量としての（内部）エネ

ルギーは非平衡定常状態のエネルギー流保存則の後に見いだされた。 

　(5.3)に熱力学のエネルギー保存則(5.2)を使うと 

	 	 (5.4) 

です。(5.4)はエネルギーが不生不滅であることを主張する。エネルギーが不生不滅である

ことを熱力学第一法則と命名したのは同じクラウジウスの1850年論文です。 

　熱力学のエネルギー概念(5.3)も熱力学第一法則(5.4)も示強性状態量である温度 とは無

関係です。 

　なお、フーリエの 

	 	 (1.6) 

1
V

lim
δt→0

δW
δt

= ∇ Ĩ

1
V

∂U
∂t

+ ∇ Ũ = 0

1
V

lim
δt→0

δQ
δt

= − ∇ Q̃

∇ Q̃ = 0

Ũ

U U/V

σU
1
V

∂U
∂t

+ ∇ Ũ = σU

U

∂U/∂t

Ũ ≡ Ĩ + Q̃

∇ Ũ = 0

σU = 0

T

ρCp
∂T
∂t

+ ∇ Q̃ κ = 0
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は、右辺のゼロを、熱素の生成密度の値と解釈すると(1.6)は熱素保存則ですが、エネルギー

生成密度 の値と解釈すると熱伝導（ かつ ）の場合の熱力学第一法則(5.4)

です。 

5.1.　準静的変化 
　熱力学の状態量には、示強性状態量と示量性状態量とがある。温度 や圧力 は示強性状

態量であり、単位質量あたりのエネルギー や単位質量あたりの体積 は示量性状態量で

す。 

　平衡状態では、示強性状態量は一様不変ですが、示量性状態量は一様とは限らない。例

えば、二相共存の平衡状態では示量性状態量は二相で異なることがある。ここで、一様と

は位置に依らないことを意味する。不変とは時刻に依らないことを意味する。なお、平衡

状態という概念が存在することを熱力学の第零法則とする立場もある。 

　準静的変化とは示強性状態量が一様な変化です。フーリエが議論した熱伝導現象では温

度勾配 が有限であり、示強性状態量の一つである温度 が一様ではない： 。熱

伝導現象は、 なので、準静的現象ではない。 

　単相の準静的変化の特徴を調べよう。 

　準静的変化（ かつ ）では、密度 も一様、すなわち、 

	  

です。なぜなら、等温圧縮率 

	 	 (1.2) 

と熱膨張率 

	 	 (1.3) 

を使うと 

	  

ですが、 かつ では だからです。 

　連続体の質量保存則 

	 	 (1.1) 

は、準静的変化つまり では、 

σU Q̃ = Q̃ κ ∇ Ĩ = 0

T p

U V

∇T T ∇T ≠ 0

∇T ≠ 0

∇T = 0 ∇p = 0 ρ ≡ V−1

∇ρ = 0

KT ≡ −
1
V ( ∂V

∂p )
T

β ≡
1
V ( ∂V

∂T )
p

V−1 ∇V = β ∇T − KT ∇p

∇T = 0 ∇p = 0 ∇V = 0

∂ρ
∂t

+ ∇(ρu) = 0

∇ρ = 0

- /  -32 154



	  

です。 

　 の局所的時間変化については 

	  

に、(5.1)を使うと、 

	  

です。ここで を使うと、左辺がゼロなので、 

	 	 (5.5) 

です。(5.5)は質量保存則(1.1)に準静的変化（ かつ ）を適用した結果です。 

5.2.　仕事流密度 
　単一成分系の準静的断熱変化を議論する。 

　閉鎖系の体積が準静的（ かつ ）に だけ変化すると、閉鎖系が外界にす

る仕事は、 

	  

です。 

　体積変化 に要する時間を とすると、 

	  

です。これに 

	 	 (5.5) 

を使うと 

	  

です。ここで 

	  

を導入すると、 

	  

です。これを使うと、準静的変化（ かつ ）では 

	  

なので、 

	  

∂ρ
∂t

+ ρ∇u = 0

ρV
∂(ρV )

∂t
= ρ

∂V
∂t

+ V
∂ρ
∂t

∂(ρV )
∂t

= ρ
∂V
∂t

− Vρ∇u

ρ ≡ V−1

∇u =
1
V

∂V
∂t

∇T = 0 ∇p = 0

∇T = 0 ∇p = 0 dV

δW = pdV

dV δt
δW
δt

≃ p
∂V
∂t

∇u =
1
V

∂V
∂t

lim
δt→0

δW
δt

= Vp∇u

Ĩ ≡ pu

∇ Ĩ = ∇(pu)

∇T = 0 ∇p = 0

∇ Ĩ = p∇u

lim
δt→0

δW
δt

= V ∇ Ĩ
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です。従って、 は仕事流密度です。これは蒸気機関の出力仕事を評価する際にワッ

トが使った図示仕事に対応する。 

　この準静的変化（ かつ ）が断熱変化（ ）の場合には、体積変化

による閉鎖系のエネルギー変化は、 

	  

です。従って、エネルギーの時間的変化は 

	 	 (5.6) 

つまり 

	  

です。 

　こういうわけで、準静的断熱変化（ かつ かつ ）に限定するなら、

仕事流 に対応する示量性状態量は（内部）エネルギー です。 

　熱流密度 については次の「6. エントロピー流増大則：クラウジウスとトムソン」で議

論する。 

Ĩ ≡ pu

∇T = 0 ∇p = 0 ∇ Q̃ = 0

dV

dU = − pdV

∂U
∂t

= − p
∂V
∂t

1
V

∂U
∂t

+ ∇ Ĩ = 0

∇T = 0 ∇p = 0 ∇ Q̃ = 0

Ĩ U

Q̃

- /  -34 154



6.　エントロピー流増大則：クラウジウスとトムソン 

6.1　熱流の正体：エントロピー流 
　熱力学第一法則の主役は仕事流密度 と熱流密度 です。熱力学第一法則が確立されて

も、熱流の正体は未だ判然としないままでした。ブラック以来の問題「温度と熱流との関

係」が不明だからです。 

　クラウジウスは、トムソンが確立した絶対温度 を受け容れただけでなく、エントロ

ピー流密度 を導入し、温度 の面を通過する熱流密度を 

	 	 (6.1) 

とした（1854年）。熱流はエントロピー流に比例し、比例係数が温度であることを主張

する(6.1)は「温度と熱流との関係」そのものです。こうしてブラック以来の問題が解消さ

れた。熱流の正体はエントロピー流です。 

　カルノー機関のエントロピー流密度 は、 に対応するので、高温部も低温

部も値が同じです。エントロピー流密度の記号 はカルノー（Sadi Carnot）への敬意の表

れです。 

　(6.1)により、トムソンの第一の悩みが解消された。トムソンの第一の悩み「熱流密度

と仕事流密度 との相違」はエントロピー流密度 との関わりの有無にある。熱流密度 は

エントロピー流密度 に比例するが、仕事流密度 はエントロピー流密度 とは関わりが無

い。 

　(6.1)によれば 

	 	 (6.2) 

です。 

　(6.2)によれば、準静的変化（ ）では、熱流密度の湧き出し は、エントロピー

流密度の湧き出し に比例する: 

	  

	したがって、準静的断熱変化（ かつ ）では、エントロピー流密度は湧き出

すことも吸い込まれることもない： 。 

　原動機の熱流は高温部から低温部へ向かうので、エントロピー流も高温部から低温部へ

向かう。同じことだが 

Ĩ Q̃

T

S̃ T

Q̃ ≡ T S̃

S̃ Q̃ /Tcal = Q̃ /T

S̃

Q̃

Ĩ S̃ Q̃

S̃ Ĩ S̃

∇ Q̃ = S̃ ∇T + T ∇ S̃

∇T = 0 ∇ Q̃

∇ S̃

∇ Q̃ = T ∇ S̃

∇T = 0 ∇ Q̃ = 0

∇ S̃ = 0
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です。カルノー機関では、 なので、カルノー効率は 

	  

です。周知のこの関係はクラウジウスによるエントロピー流密度 の導入の結果です。 

　カルノー効率を容認しているにも関わらずエントロピー流密度 を嫌う人が少なくない

のは残念です。 

6.2.　クラウジウスの不等式 
　定常状態（ ）の熱力学第一法則 

	 	 (5.1) 

に(6.2)を使うと、エントロピー流密度の湧き出しは 

	 	 (6.3) 

です。 

　摩擦では、投入仕事 の全てがエントロピー流密度の湧き出しに使わるので、

です。この場合の はランフォード伯トンプソンが気付いた摩擦による発熱

です。 

　熱伝導による熱流密度 に対応するエントロピー流密度 

	 	 (6.4) 

を使うと、 

	  

です。 の一様性 に注意すると 

	 	 (6.5) 

です。経験則 によれば です。 

　クラウジウスは同じ1854年論文で、一つの経験則として、定常状態のエントロピー流増

大則 

	 	 (6.6) 

を提案した。クラウジウスの不等式とも呼ばれる(6.6)は熱力学第二法則の最初の定式化で

す。(6.6)は定常状態ではエントロピー流密度は湧き出すことがあっても吸い込まれること

Q̃ C
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=
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がないことを主張する経験則です。(6.5)によれば のためには が必要充分で

す。つまり、経験則 は の顕われです。 

　カルノーの「無駄」はエントロピー流密度の湧き出し 

	 	 (6.6) 

を意味する。なぜなら、 

	 	 (6.2) 

に、(6.6)を考慮すると、 

	  

ですが、「無駄」のないカルノー機関（ ）では、 

	  

となるからです。 

　エントロピー流増大則により、トムソンの第二の悩み「相互変換の非対称性の所以は何

か？」も解消された。原動機では、カルノー機関（ ）ですら、出力仕事流密度に変

換されるのは だけで、 は仕事流密度に変換されない。原

動機から出力される最大仕事は です。また、後のヒートポン

プでは、カルノー機関（ ）ですら、 だけの入力仕事流密度

が必要です。同じ事ですが、ヒートポンプに必要な最小仕事は

です。 

　 となるように円筒座標の軸 を選び、 、 、 は 成分だけが有限とす

る。カルノーのイメージ図2.1に対応するには とする。エネルギー流保存則により

は位置 に依らない。 

　長さ で温度差 の微小領域の直列接続を想定する。 

　微小領域が原動機（ かつ ）として機能している場合には、 の

場所では です。従って、原動機として機能している全領域で、エネルギー流保

存則により、 

	 	 (6.7) 

です。 

　微小領域がヒートポンプ（ かつ ）として動作している場合には

なので、 では です。従って、ヒートポンプとして動作している全領域 
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で、エネルギー流保存則により、(6.7)が成り立つ。 

　こういうわけで、熱機関（原動機とヒートポンプとの総称）では(6.7)が成り立つ。この

ことは熱機関に及ぼすエネルギー流保存則の結果です。 

　微小熱機関（微小原動機と微小ヒートポンプとの総称）を議論するには 

	 	 (6.8) 

が便利です。(6.8)には二つの等号がある。最初の等号は(5.1)の顕れです。最後の等号は

(6.1)と(6.2)との顕れです。[長さ]の逆数の次元を持つ には、漱石の猫のように、未だ名前

がない。 

　長さ の微小カルノー機関（ ）の効率は 

	  

です。 

　長さ の微小原動機の効率は 

	  

です。(6.8)によれば、微小原動機（ かつ ）では ですが、原動機

では なので、 を考慮すると 

	  

つまり 

	  

です。 

　長さ の微小ヒートポンプ（ かつ ）の成績係数（COP）は 

	  

です。従って、微小ヒートポンプでも です。ヒートポンプでは なので、

を考慮すると 

	  

つまり 

	  

です。 
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Q̃
=

∇T
T

+
∇ S̃

S̃

ζ

Δz > 0 ∇ S̃ = 0

ζΔz = ζcalΔz ≡
∇T
T

Δz

Δz > 0

ζΔz ≤ ζcalΔz

Q̃ < 0 ∇ Q̃ = − ∇ Ĩ ≤ 0 ζ > 0

S̃ < 0 ∇ S̃ ≥ 0
∇ S̃

S̃
≤ 0

ζ ≤ ζcal

Δz > 0 Q̃ ≥ 0 ∇ Q̃ = − ∇ Ĩ > 0

(ζΔz)−1 = (−
∇ Ĩ

Q̃ )
−1

= ( ∇T
T

Δz +
∇ S̃

S̃
Δz)

−1

> 0

ζ > 0 S̃ > 0 ∇ S̃ ≥ 0

∇ S̃

S̃
≥ 0

0 < (ζΔz)−1 ≤ (ζcalΔz)−1
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　このように、エネルギー流保存則だけではなく、トムソンによる絶対温度の導入

（1848年）とクラウジウスによるエントロピー流密度 とエントロピー流増大則(6.6)の導

入（1854年）も含めて、カルノーの『火の動力』と『覚え書き』の先見性が顕著です。 

　最後に、 と の張る二次元平面（図６.1）を想定する。定常状態の熱力学第一法

則 

	 	 (6.3) 

だけではこの空間内の全ての点が可能だが、(6.3)にクラウジウスの不等式 

	 	 (6.6) 

を使うと、この空間内の 

	  

を満足する領域だけが可能です。同じことだが、熱力学第一法則を満足する定常状態が全

て実現されるのでは無くて、熱力学第一法則を満足する定常状態の中でクラウジウスの不

等式をも満足する定常状態だけが実現可能です。 

　原動機（ ）のためには 

	  

が必要で、ヒートポンプ（ ）のためには 

	  

が必要です。原動機（ ）とヒートポンプ（ ）は共存しない。 

S̃

∇ Ĩ S̃ ∇T

∇ S̃ = −
1
T (∇ Ĩ + S̃ ∇T)

∇ S̃ ≥ 0

S̃ ∇T + ∇ Ĩ ≤ 0

∇ Ĩ > 0

0 < ∇ Ĩ = − S̃ ∇T − T ∇ S̃ ≤ − S̃ ∇T

S̃ ∇T > 0

0 < S̃ ∇T ≤ − ∇ Ĩ − T ∇ S̃ ≤ − ∇ Ĩ

∇ Ĩ > 0 S̃ ∇T > 0
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図６.1　 平面：
原点を通る直線 の
上あるいは右は の領
域なのでこの世に存在しな
い。原動機（ ）が実
現されるのは の領
域だけです。ヒートポンプ
（ ）が実現される
のは の領域だけで
す。原動機でもヒートポン
プ で も な い 第 三 象 限
（ ）も熱力学的に可能
な領域です。

∇ Ĩ − S ∇T

∇ S̃ = 0
∇ S̃ < 0

∇ Ĩ > 0
S̃ ∇T ≤ 0

S̃ ∇T > 0
∇ Ĩ < 0

ζ < 0

∇ Ĩ

S̃ ∇T

0

∇ S̃ = 0

ヒートポンプ

原動機

ζ < 0



　図6.1の第三象限は に対応する。この領域で生じる非平衡定常状態にも未だ名前が

ない。第三象限と第二象限との境界 

	 　かつ　  

は一様温度（ ）での摩擦熱に相当し、第三象限と第四象限との境界 

	 　かつ　  

は単純熱伝導に対応する。つまり、熱伝導によるエントロピー流 は高温部から低温部へ

向かう。逆に、熱伝導による熱流が高温部から低温部へ向かうのは定常状態の熱力学第二

法則（ ）の顕れです。 

　エントロピー流密度の湧き出し 

	 	 (6.3) 

を、視点を変えて、議論してみよう。 

　熱流 が高温部から低温部へ向かう の場合には、 は の減少関数

です。 が可能な場合には、 が大きくなるにつれて が減少する。同じこと

ですが、 で が可能な場合には、 が小さくなるように、原動機とし

て動作し、カルノー機関（ ）では が最大になる。このことは、後に、最大仕事

の法則と呼ばれたこともある。逆に、 で が可能な場合には、 は

の減少関数です。 で が可能な場合には、エントロピー流密度の湧

き出し が小さくなるように、ヒートポンプとして動作し、 の場合に

が最大となる。 

　可能な定常状態の中から、エントロピー流密度の湧き出し が最小の定常状態が

選ばれる。このことは、熱機関の動作原理であるだけでなく、定常状態の重要な経験則で

す。この経験則については 「10.3 エントロピー生成最小の法則」で議論する。 

　基本概念は別の概念を使って定義できない。1853年までは基本概念の一つだった熱流

密度 は1854年以降はエントロピー流密度 と絶対温度 とを基本概念として定義される

概念に格下げされた。現代でも熱流という言葉が使われるが、 

	 	 (6.1) 

を意識して使っている人が多いとは言えない。むしろ、多くの人々は1853年のままです。

1853年はペリー率いるアメリカ合衆国海軍東インド艦隊の蒸気船２隻を含む艦船４隻が

日本に来航した年です。 

ζ < 0

∇ Ĩ < 0 S̃ ∇T = 0

∇T = 0

∇ Ĩ = 0 S̃ ∇T < 0

S̃κ

∇ S̃ ≥ 0

∇ S̃ = −
1
T (∇ Ĩ + S̃ ∇T)

Q̃ ≡ T S̃ S̃ ∇T < 0 ∇ S̃ ≥ 0 ∇ Ĩ

∇ Ĩ > 0 ∇ Ĩ ∇ S̃ ≥ 0

S̃ ∇T < 0 ∇ Ĩ > 0 ∇ S̃ ≥ 0

∇ S̃ = 0 ∇ Ĩ

∇ Ĩ < 0 S̃ ∇T > 0 ∇ S̃

S̃ ∇T > 0 ∇ Ĩ < 0 S̃ ∇T > 0

∇ S̃ ≥ 0 ∇ S̃ = 0

S̃ ∇T > 0

∇ S̃ ≥ 0

Q̃ S̃ T

Q̃ ≡ T S̃
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6.3.　熱電気現象のトムソンの第二関係式 
　クラウジウスがクラウジウスの不等式を提唱した1854年にトムソンは熱電気現象のトム

ソン効果とトムソンの第一関係式 

	 	 (3.12) 

とを発見した（1854年）。導線の単位体積当たりの電気抵抗を とするとジュール発熱

とは別に電流密度 と温度勾配 との積 に比例する吸放熱がある。 

	 	 (3.11) 

によれば、放熱密度は電流密度の２次式 

	  

です。ここでトムソン係数とよばれる の次元はゼーベック係数 の次元と同じ[電位]/[温

度]です。 

　ゼーベック係数 とペルティエ係数 とトムソン係数 はいずれも温度に依存する物性定

数です。ゼーベック効果（1821年）とペルティエ効果（1834年）とトムソン効果（1854

年）との３効果は無関係ではない。トムソンの第一関係式(3.12)とは別にトムソンの第二

関係式が存在する。ペルティエ係数 の単位が[電位]に等しく、ゼーベック係数 の次元が[電

位]/[温度]であることを使うと、次元解析により、 

	  

という関係が期待され、比例係数は無次元量です。トムソンはこの比例係数を1とした

（1856年）： 

	 	 (6.9) 

これがトムソンの第二関係式です。(6.9)の根拠については「6.4 熱電気現象の相反関係」

で述べる。 

　トムソンの第一関係式 

	 	 (3.12) 

と第二関係式(6.9)とから 

	  

となる。 

Θ ≡
∂Π
∂T

− Σ

Ω

·qJ = Ω j̃ 2 ≥ 0 j̃ ∇||T j̃ ∇||T

·q = − ∇|| Ũ = ·qJ + Θj̃ ∇||T

j

·q = Ω j̃ 2 + Θj̃ ∇||T

Θ Σ

Σ Π Θ

Π Σ

Π ∝ ΣT

Π = ΣT

Θ ≡
∂Π
∂T

− Σ

Θ = T
∂Σ
∂T
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　したがって、例えば、 の場合には、 となり、(6.9)からは となる。

鉛のように の場合には、 なので、 の温度依存性は小さく、 となる。

の場合には は温度勾配 に比例し、 は温度 に比例する。ま

た、 の場合には、 は温度 に依らず、 となる。 

　熱電気現象では 

	 	 (6.10) 

です。なぜなら、 

	 	 (3.9) 

だからです。 

　次に、 

	 	 (6.11) 

です。(6.11)を導出しよう。熱電気現象の熱流密度 

	 	 (6.1) 

に 

	 	 (3.5) 

を使うと 

	 	  

ただし 

	 　	 (6.4) 

　	  

です。これを使うと、(6.11)が得られる。 

　熱電気現象のエントロピー流密度の湧き出し 

	 	 (6.12) 

は、(6.3)に(6.10)と(6.11)とを使うと、 

	 	 (6.13) 

となるので、熱電気現象のエントロピー流密度の湧き出し は、温度勾配 と電流密

度 との2次式です。この右辺第二項 

Σ ∝ T n Θ ∝ nT n Π ∝ T n+1

Θ ≃ 0 n ≃ 0 Σ Π ∝ T

Θ ≃ 0 EΣ ≡ Σ∇||T ∇||T Q̃ Π ≡ Π j T

Σ ∝ log T Θ T Π ∝ T log T

−
∇|| Ĩ

T
=

1
T

ρ j̃ 2 + Σ
∇||T

T
j̃

∇|| Ĩ = − ρ j̃ 2 − Σ j̃ ∇||T

−
S̃ ∇||T

T
= κ (

∇||T
T )

2

−
Π
T

∇||T
T

j̃

Q̃ ≡ T S̃

Q̃ = Q̃ κ + Q̃ Π

S̃ = S̃κ + S̃Π

S̃κ ≡
Q̃ κ

T
= − κ

∇||T
T

S̃Π ≡
Q̃ Π

T
=

Π
T

j̃

∇|| S̃ = −
1
T (∇|| Ĩ + S̃ ∇||T)

∇|| S̃ = κ (
∇||T

T )
2

+ (Σ −
Π
T ) ∇||T

T
j̃ +

Ω
T

j̃ 2

∇|| S̃ ∇||T̃

j̃
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は、トムソンの第二関係式(6.9)を仮定すると、ゼロです。同じことですが、熱電気現象の

エントロピー流密度の湧き出しは、トムソンの第二関係式(6.9)によれば、 

	  

です。 

　これには重要な意味がある。経験によれば と なので、温度勾配 と電流密

度 の値に依らず、エントロピー流増大則 

	 	 (6.6) 

が成り立つ。つまり、トムソンの第二関係式(6.9)を仮定すると、熱電気現象でもエントロ

ピー流増大則が成り立つ。 

　逆に、任意の と に対してエントロピー流増大則(6.6)が成立するには、トムソンの

第二関係式(6.9)と と とが必要充分です。言い換えると、トムソンの第二関係式

(6.9)と経験則「熱伝導度 や電気抵抗率 が負になることが無い」はエントロピー流増大

則の顕れです。 

　同じことですが、熱電気現象のエントロピー流増大 は、トムソンの第二関係式

によると、熱伝導によるエントロピー流増大 

	  

とジュール発熱によるエントロピー流増大 

	  

だけです。 

6.4.　熱電気現象の相反関係 
　熱電気現象は非平衡定常状態です。エントロピー流密度の湧き出し 

	 	 (6.12) 

は 

	 	 (6.14) 

です。なぜなら、導体中の電場 を使うと 

	  

であり、導体中の熱流密度 

(Σ −
Π
T ) ∇||T

T
j̃

∇|| S̃ = κ (
∇||T

T )
2

+
Ω
T

j̃ 2

κ ≥ 0 Ω ≥ 0 ∇||T̃

j̃

∇|| S̃ ≥ 0

j̃ ∇||T /T

κ ≥ 0 Ω ≥ 0

κ Ω

∇|| S̃ ≥ 0

κ (
∇||T

T )
2

≥ 0

Ω
T

j̃ 2 ≥ 0

∇|| S̃ = −
1
T (∇|| Ĩ + S̃ ∇||T)

∇|| S̃ = j̃
E
T

+ Q̃ ∇||( 1
T )

E

−
∇|| Ĩ

T
=

Ej̃
T

= j̃
E
T
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	 	 (6.1) 

を使うと 

	  

となるからです。 

　熱電気現象のエントロピー流密度の湧き出し(6.14)によれば、熱電気現象では、熱流密

度 と電流密度 という二つの流れ密度に対応して、 と という二つの熱力学的

力が存在する。 

　流れ密度と熱力学的力との関係を、形式的に、 

	 	 (6.15) 

	 	 (6.16) 

とする。行列表示では 

です。これは流れ密度を熱力学的力で表現しただけです。 

　これとは逆に、熱力学的力を流れ密度で表現することも出来る。このことは相反関係

（reciprocal relation）と呼ばれる経験則です。相反関係は数学的には行列 

の逆行列が存在することを意味する。従って、相反関係が成り立つためには、対角成分は

正（ ）で、非対角成分は等しいこと（ ）が必要です。 

　行列要素 と熱伝導度 、抵抗率 、ゼーベック係数 、ペルティエ係数 、トムソン係

数 との関係を調べよう。 の場合には、(6.15)が 

	  

となるので、 

	  

です。 の場合には、(6.16)がオームの法則 

	  

となるので、 

	  

です。対角成分が正（ ）のためには、 と とが必要です。 

Q̃ ≡ T S̃

−
S̃ ∇||T

T
= Q̃ ∇||( 1

T )

Q̃ j̃ ∇||(1/T ) E /T

Q̃ = L11 ∇||( 1
T ) + L12

E
T

j̃ = L21 ∇||( 1
T ) + L22

E
T

Lii > 0 L12 = L21

Lij κ Ω Σ Π

Θ E /T = 0

Q̃ = Q̃ κ ≡ − κ ∇||T

L11 = κT 2 > 0

∇||(1/T ) = 0

j̃ =
E
Ω

L22 =
T
Ω

> 0

Lii > 0 κ > 0 Ω > 0
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　ゼーベック起電力の測定では です。 の場合には、(6.16)の がゼーベック起電

力 

	  

に等しくなるので、 

	  

です。ペルティェ効果による熱流密度 の測定では です。 の場合に

は(6.15)と(6.16)とは、それぞれ、 

	 　と　  

となるので、 

	  

つまり 

	  

です。 

　熱電気現象の相反関係が成り立つためには非対角成分が等しい（ ）こと、すな

わち、トムソンの第二関係式 

	 	 (6.9) 

が必要です。トムソンは相反関係を根拠として、(6.9)を提唱した。 

　クラウジウスのエントロピー流増大則を受け容れたトムソンは、熱電気現象のエントロ

ピー流増大則は相反関係と関わりがあることを示した。 

　20世紀のオンサーガー（Lars Onsager、1903-1976年）は局所平衡の仮定が成り立つ

場合の非平衡定常状態を、揺動散逸定理と力学の詳細釣合い（detailed balance）を使っ

て微視的立場で議論することで、相反関係を証明した（1931年）とされる。このことに

ついては「10.2　揺らぎと安定性」で述べる。 

j̃ = 0 j̃ = 0 E

EΣ = Σ∇||T

L21 =
ΣT 2

Ω
Q̃ Π = Π j̃ ∇T = 0 ∇T = 0

Q̃ Π = L12
E
T

j̃ = L22
E
T

Π =
L12

L22

L12 =
ΠT
Ω

L12 = L21

Π = ΣT
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7.　示量性状態量としてのエントロピー：クラウジウ
ス 
　1808年にゲイリュサックが、経験則として、気体反応の法則を提唱した。例えば、水素

ガスと酸素ガスが反応して水蒸気になる反応で標準状態に換算すると、２容積の水素ガス

と１容積の酸素ガスから２容積の水蒸気ができる。このように、化学反応の原料と生成物

の量は、標準状態に換算すると、整数比になることを気体反応の法則と呼ぶ。 

　アヴォガドロ（L.R. Amedeo C. Avogadro、1776-1856年）がアヴォガドロの仮説を

提唱した（1811年）。少し遅れてアンペール（André-Marie Ampère, 1775-1836年）も

同じ仮説を提唱した（1813年）。いずれも気体反応の法則（1808年）に基づく仮説であ

り、標準状態の同一体積中の気体は同じ数の気体分子を含むことを主張する。これが気体

分子（molecule）というイメージの始まりです。 

　その後、「気体分子は実在するのか、それとも、理論構成上の便利な概念なのか」が問

題とされた。気体分子は実在するとの立場の人々の手により気体分子運動論が進展した。 

　クラウジウスが、エントロピー流密度 を導入し、非平衡定常状態のクラウジウスの不

等式（あるいはエントロピー流増大則） 

	 	 (6.6) 

を提唱したのは1854年のことです。この頃の気体分子運動論は気体分子を質点と見做す

ことで（古典的）理想気体の状態方程式を導出することに成功していた。 

　クラウジウスは1855年からチューリッヒに転居するとともに気体分子運動論の研究に

向かい、気体の比熱比 の相違は気体分子の内部自由度に起因することを主張した（1857

年）。このことは気体分子運動論から古典統計力学への橋渡しとなった：古典統計力学で

は気体分子の運動の自由度を とすると 

	  

です。例えば、単原子分子気体（ ）では となり、二原子分子気体（ ）で

は となる。空気では なので、空気の主成分である窒素ガスと酸素ガスとが

二原子分子であることを意味する。 

　更に、クラウジウスは気体分子運動論に平均自由行程という概念を導入した（1858

年）。気体分子を質点と見做すなら、気体分子が非弾性衝突してから非弾性衝突するまで

に進む距離の平均です。弾性衝突だけでは気体が非平衡状態から平衡状態へ向かうことが

不可能だからです。 

S̃

∇ S̃ ≥ 0

γ

n

γ =
n + 2

n
n = 3 γ = 5/3 n = 5

γ = 7/5 γ = 7/5
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　気体分子を剛体球とみなして気体分子間の衝突を議論したマクスウェル（James Clerk 

Maxwell、1831-79年）は気体分子のマクスウェル分布（速度分布）を見出し（1859

年）、圧力一定の気体の粘性係数が温度の増加関数であることを示した。さらに、気体の

粘性係数や熱伝導度が分子間力に依存することを明らかにした（1866年）。 

　気体分子運動論から熱力学に戻ったクラウジウスはエントロピー流 に対応する単位質

量あたりの示量性状態量としてのエントロピー を導入した（1865年）。これにエントロ

ピー生成密度 も加えて、関係概念としてのエントロピー概念が完成した： 

	 	 (7.1) 

　定常状態（ ）では空間変化 が重要です。速度 で運動する流体では、密度

に質量流密度 が伴うように、エントロピー密度 にエントロピー流密度 が伴

う。 は対流熱伝達に伴うエントロピー流密度です。対流熱伝達については1900年

にベナールによる熱対流の実験が行われ、レーリーが1916年に理論的解析がおこなわれ

たレーリー・ベナール型対流が有名です。 

　エントロピーという言葉は示量性状態量としてのエントロピーを導入した際に「変換」

を意味するギリシャ語τροπή（トロペー）からクラウジウスが作った造語です。「変換」

に拘ったクラウジウスはトムソンと同じ悩みを抱き続けたのでしょう。 

　クラウジウスは、閉鎖系のエネルギーの準静的変化を、示量性状態量としてのエントロ

ピー の微小変化 を使って、 

	 	 (7.2) 

とした。閉鎖系の準静的変化では、閉鎖系のする仕事 

	 	  

だけでなく、閉鎖系が吸収する熱を 

	  

としたことになる。 

　閉鎖系のエネルギーの準静的変化(7.2)は熱力学の状態量だけで書かれている。(7.2)には

熱エネルギーの増加 や仕事の減少 が見当たらない。(7.2)は後に議論する平衡状態

の熱力学の基本的関係式です。 

　(7.2)は、空間変化では 

S̃

S

σS

ρ
∂S
∂t

+ ∇ S̃ = σS

∂S /∂t = 0 ∇ S̃ u ρ

ρu ρS S̃ = ρSu

S̃ = ρSu

S dS

dU = TdS − pdV

δW = pdV

δQ = TdS

δQ −δW
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であり、局所的時間変化では 

	  

です。閉鎖系のエネルギーの準静的断熱変化では です。 

　示量性状態量としてのエントロピー の絶対値は熱力学では定まらない。重要なのは時

間変化 と空間変化 だけです。 

7.1.　熱力学の基本概念と基本法則 
　エントロピー の導入により、非平衡定常状態のクラウジウスの不等式（エントロピー

流増大則） 

	 	 (6.6) 

と示量性状態量としてのエントロピー とエントロピー生成密度 との関係概念 

	 	 (7.1) 

としてのエントロピー概念が完成した（1865年）。 

　定常状態（ ）でクラウジウスの不等式(6.6)が成り立つためには 

	 	 (7.3) 

が必要充分です。熱力学第二法則は、定常非定常に関わらず、(7.3)を主張する経験則です。 

不可逆過程では です。可逆過程（ ）では、 

	  

なので、エントロピーは保存量です。可逆過程（ ）の場合には 

	  

です。この意味で、示量性状態量としてのエントロピー は、可逆過程（ ）では、熱

素保存則に基づく熱学の熱素量に対応する。 

　エネルギー概念とエントロピー概念とは熱力学の基本概念です。熱力学のエネルギー概

念は力学のエネルギー概念を拡張したものですが、エントロピー概念は熱力学特有の基本

概念です。 

∇U = T ∇S − p∇V

∂U
∂t

= T
∂S
∂t

− p
∂V
∂t

∂S /∂t = 0

S

∂S /∂t ∇S

S

∇ S̃ ≥ 0

S σS

ρ
∂S
∂t

+ ∇ S̃ = σS

∂S /∂t = 0

σS ≥ 0

σS > 0 σS = 0

ρ
∂S
∂t

+ ∇ S̃ = 0

σS = 0

S̃ = ρSu

S σS = 0
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　エネルギー概念もエントロピー概念も、対応する示量性状態量と移動量と生成量との間

の関係概念です。歴史的には、非平衡定常状態の研究から移動量が最初に認識され、次に

示量性状態量が認識され、最後に生成量が認識された。 

　エネルギー概念は、エネルギー密度（単位体積当たりのエネルギー） とエネルギー

流密度 とエネルギー生成密度 との関係概念です： 

	 	  

　エントロピー概念はエントロピー密度 とエントロピー流密度 とエントロ

ピー生成密度 との関係概念です： 

	 	 (7.1) 

　熱力学の基本法則とされる熱力学の第一法則 と第二法則 とはいずれも生成

密度に関わる経験則です。 

7.2.　孤立系のエントロピー増大則：時間の矢 
　状態量としてのエントロピーを導入した1865年論文で、クラウジウスは孤立系のエント

ロピーも議論した。孤立系とは何だろう。開放系は質量流とエネルギー流とエントロピー

流の出入りが可能です。エネルギー流とエントロピー流の出入りは可能だが質量流の出入

りは不可能な開放系が閉鎖系です。孤立系は質量流だけでなくエネルギー流もエントロ

ピー流も出入り不可能です。質量流の出入りを拒否する壁は可能ですが、エネルギー流や

エントロピー流を拒否する壁は見当たらない。 

　孤立系が存在するかどうかは不明です。宇宙全体を一つの孤立系とみなすことは、机上

の空論です。 

　孤立系でエントロピー生成密度 を体積積分すると、(7.1)により、 

	  

です。ガウスの定理により	  

	  

です。 は孤立系表面の微小面積要素です。孤立系はエントロピー流の出入りが不可能な

ので、 

	  

です。 

　したがって、孤立系では 

ρU

Ũ ≡ Ĩ + Q̃ σU

ρ
∂U
∂t

+ ∇ Ũ = σU

ρS S̃ ≡ S̃κ + Sρu

σS

ρ
∂S
∂t

+ ∇ S̃ = σS

σU = 0 σS ≥ 0

σS

∫ ∫ ∫ σSdV = V−1 ∂
∂t ∫ ∫ ∫ SdV + ∫ ∫ ∫ ∇ S̃dV

∫ ∫ ∫ ∇ S̃dV = ∫ ∫ S̃d A
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∫ ∫ S̃d A = 0
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です。熱力学第二法則 によりこの左辺は正またはゼロです： 

	  

従って、右辺も正またはゼロです： 

	  

つまり、孤立系の全エントロピーは減ることが無い。同じことだが、非平衡状態の孤立系

は平衡状態に達するまで全エントロピーが増加し続ける。このことは孤立系のエントロ

ピー増大則と呼ばれている。 

　孤立系のエントロピー増大則によれば、熱力学的時間は逆向しない。孤立系は平衡状態

（ ）では熱力学的時間が止まる。この世では孤立系のエントロピー増大則が成り立

つが、あの世では孤立系のエントロピーが減少するかも知れない。しかし、妄想の対象と

なるあの世は、実験観察に基づく科学の対象外です。 

　熱力学的時間は、未来から過去へと逆行することはなく、過去から未来へ向かう。この

ことをエディントン（A. Eddington、1882-1942年）は時間の矢と呼んだ（1927年）。

エディントンの時間は、力学的時間とは異なる熱力学的時間です。純粋力学は不可逆過程

を対象としないので、力学的時間は未来から過去へと逆行可能です。熱力学は不可逆過程

をも対象とするので、孤立系の熱力学第二法則は時間の矢の方向と一致する。 

∫ ∫ ∫ σSdV = V−1 ∂
∂t ∫ ∫ ∫ SdV

σS ≥ 0

∫ ∫ ∫ σSdV ≥ 0

V−1 ∂
∂t ∫ ∫ ∫ SdV ≥ 0

σS = 0
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8.　管内音波の流体力学：クントとキルヒホッフ 
　音速と音波の研究史は17世紀まで遡ることができる。音を流体要素の振動運動による

縦波と見做したニュートン（Isaac Newton、1642-1727年）は自由空間中を伝播する音

波の速さを議論した。流体要素の振動変位速度を とした。流体要素の圧力や温度も、そ

れぞれ、時間平均圧力 と時間平均温度 を中心として振動するが、温度一様

（ ）の場合を議論したニュートンは流体要素の温度振動は無い（ ）と仮

定した。 

　力学の対象は、17世紀には主に質点の運動だったが、18世紀には連続体の運動も対象

とするようになり、連続体の力学が始まった。剛体を除く連続体の力学は後の弾性体論と

流体力学です。18世紀の流体力学は、力学と同様に、不可逆過程を含まない流れ、すなわ

ち、理想流体を対象とした。 

　砲声による自由空間中の音速測定が18世紀末に行われ、ニュートンの音速理論からのず

れが明白になった。19世紀初頭には流体要素の温度振動を認め、音は流体要素が断熱可

逆的な振動運動と理解されるようになった。自由空間中の音速 は密度と断熱圧縮率で決

まる。添え字 は断熱可逆を意味する。 

　19世紀になると流体力学はその対象を理想流体から実在する流体に拡張した。ナヴィエ

（C.L.M. Henri Navier、1785-1836年）は粘性を考慮し（1822年）、ストークス

（George Gabriel Stokes、1819-1903年）は粘性流体の一般的運動方程式を提出した

（1845年）。粘性流体の一般的運動方程式は、ナヴィエ・ストークスの式と呼ばれてい

る。 

　弾性体論によれば、棒を伝わる縦波の伝播速度は密度とヤング率で決まる。共鳴状態で

は、棒の長さが決まると棒を伝わる縦波の波長が決まるので、縦波の振動数を測定すれば

ヤング率の見当がつく。 

　棒のヤング率を推定することを目指したクント（August A.E.E. Kundt、1839-94年）

は棒を伝わる縦波の振動数を測定する道具としてクント管（Kundt's Tube）を発明した

（1866年）。1866年はクラウジウスが示量性状態量としてのエントロピーを導入した翌

年です。棒を伝わる縦波を発生させるには湿った毛織物で棒を軸方向に摩擦する。棒を伝

わる縦波を使ってクント管の中の気体を強制的に振動させると共に、クント管の長さを変

えてクント管中の音波を定在波にする。共鳴器としてのクント管の中にはリコポジウムあ

u

pm Tm

∇Tm = 0 ∂T /∂t = 0

aS

S
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るいは石松子（ヒカゲノカズラの胞子）などの微粉末を予め撒いておく。クント管中の微

粉末は、管内音波の可視化装置です。共鳴時にはクント管の中の微粉末が節に集まるの

で、定在波の節や腹の位置が判る。余談ですが、寿司店のネタ棚にはネタと共にヒカゲノ

カズラが飾り付けてある。江戸前鮨を賞味しながら、クント管を思い出して欲しい。 

　プリズムを使うと太陽光が虹のように様々な波長（あるいは周波数）の光に分解され

る。このことはプリズムの材質であるガラスの中では光速が波長（あるいは周波数）に依

存することの顕れと理解されている。媒質を伝播する波の伝播速度の周波数（あるいは波

長）依存性を分散と呼ぶ。 

　クントはクント管を使って管内音波の分散も調べた。クントの頃には、リニアモーター

駆動のスピーカーも圧電効果を使ったスピーカーも存在しない。クント管では棒の材質や

長さを変えることで周波数を変えた。 

　管内音波は、自由空間中の音波とは異なり、管壁の存在が音速に影響する。流体力学を

使って管内音波の分散を議論したヘルムホルツは、ナヴィエ・ストークスの式に従って粘

性を考慮したが、ニュートンと同様に温度変動は無い（ ）と仮定した。ヘルムホ

ルツ理論は、定性的にはクントの実験結果と一致するが、定量的には実験結果と明白なず

れがあった。 

　キルヒホッフ（Gustav R. Kirchhoff、1824-87年）は、クントの指摘に従って、粘性係

数に加えて熱伝導度 をも考慮したキルヒホッフ理論を提案した（1868年）。クラウジウ

スが示量性状態量としてのエントロピーを導入した３年後のことです。キルヒホッフ理論

は定量的にも実験結果と一致した。 

  

　キルヒホッフ理論とヘルムホルツ理論とは共通点が多い。両者の共通点を以下に列挙す

る。 

　管の幾何学的形状は太さ一様の長い円管とする。対称性を考慮して、管の中心軸を 軸

とし、中心軸からの径方向のずれを とする円筒座標を使う。管の半径を とする。管壁は

剛体とする。更に管壁の温度も振動しないとする。 

　管内音波の波長が管径に比べて充分長い場合（長波長近似）に制限する。その結果、振

動圧力 は流路断面内で一様（ ）となる。流体要素の振動運動に伴う変位 と流

速 も流路断面内分布が軸対称で、径方向成分はゼロで、軸方向成分だけが有限です。流

∂T /∂t = 0

κ

z

r r0

p ∂p /∂r = 0 ξ

u
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体要素の振動運動に伴う変位 と流速 だけでなく、振動圧力 、振動密度 、振動温度 、

振動エントロピー も流路断面内分布が軸対称とする。 

　各流体要素は振動中心の位置により識別する。流体要素の振動中心からの軸方向変位

の時間平均 は一様（ ）で とする。太さ一様の円管を想定するだけでな

く、管の端の存在が無視出来るように、変位振幅 は管の長さに比べて充分短いとする。 

　流体要素の時間平均圧力 については管内で一様（ ）とする。時間平均圧力

からのずれを振動圧力 と呼ぶことにする。 

　線形近似を使う。圧力振幅 は時間平均圧力 よりも充分小さい（ ）。流速振

幅 は自由空間中の音速 より充分小さい（ ）。さらに、長波長近似を使い、波

長は管の直径より充分大きいとする。 

　クントの実験に対応することを目指したので、キルヒホッフ理論とヘルムホルツ理論で

は、振動運動する流体要素の時間平均温度 も一様（ ）です。このために、時間

平均密度 と時間平均温度 と時間平均エントロピー とは流路断面内で一様です。 

　管軸を 座標とし、振動中心の 座標が共通の流体要素を集めて平均すると、流路断面内

平均が得られる。流路断面内平均を と表記する。例えば、振動流速 の流路断面内

平均は です。振動圧力 の流路断面平均は 

	  

です。 

8.1.　音響変数と振動モード 
　角周波数 で振動運動している量の時刻依存性には複素表示を使う。振動中心からの振

動変位 の流路断面内平均 の時刻依存性を 

	 	 (8.1) 

とする。ここで、 は の振幅です。 は振動の角周波数です。 は虚数単位で

す。 

　複素表示では、偏微分の を演算子と見做して、 に置き換えることが出来る。この

ために振動流速 の流路断面平均 の時刻依存性は 

	 	 (8.2) 

です。ここで、 
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pm ∇pm = 0 pm

p

̂p pm ̂p /pm ≪ 1

̂u aS ̂u /aS ≪ 1
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は の振幅です。 の位相は の位相より だけ進んでいることに注意して

欲しい。振動圧力 の時刻依存性は 

	 	 (8.3) 

です。ここで、 は の振幅であり、 は と変位 との位相差です。振動圧力 の位相は変

位 の位相よりも位相差 だけ進んでいることに注意して欲しい。理想的な定在波では

で、理想的な進行波では です。 も振動中心の 座標に依存する。 

　圧力振幅 と流速振幅 の比 

	 	 (8.4) 

を音響インピーダンスと呼ぶことにする。音響インピーダンスは振幅に依らない。 

　自由空間中の進行音波では、流体要素の振動を調和振動子と見做すと、運動エネルギー

の時間平均と位置エネルギーの時間平均とは等しい： 

	  

　このために、自由空間中の音響インピーダンスは	  

	 	 (8.5) 

となる。最後の等式では、時間平均密度 や断熱圧縮率 と自由空間中の音速 との関係 

	 	 (8.6) 

を使った。この関係の証明は「8.6.2.　管内音波の音速」で行う。 

　進行波（ ）の音響インピーダンスは管内で一様ですが、定在波（ ）の音

響インピーダンスは、腹では小さく、節で大きい。 

　角周波数 に依らないが複素音響インピーダンス 

	 	 (8.7) 

は振動モード（位相差 と音響インピーダンス ）で決まる。複素音響インピーダンスの大

きさは音響インピーダンス であり、複素音響インピーダンスの位相角は です。 

　角周波数 の振動運動の様子は振動モード（あるいは複素音響インピーダンス）と

で表現できる。振動モードに を合わせて音響変数と呼ぶことにする。音響変数（ 、

、 ）は振動モード（ と ）と の総称です。音響変数は振動中心の 座標に依存

する。 
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　周期的定常状態とは振動周期にくらべて長時間にわたり角周波数 と振動モードと振幅

が定常な状態です。周期的定常状態は実験観測対象として優れている。周期的定常状態は

再現性が良いからです。例えば、100周期にわたり安定なら、100回の再現性がある。 

　音波の実験にクント管のような共鳴器を使うと、角周波数 と音響変数（ 、 、 ）

とが定常な周期的定常状態が観測しやすい。 

8.2.　ラグランジュ微分の線形長波長近似 
　流体要素の運動に着目すると、速度 で運動する流体要素に関わる物理量 の時刻依存

性はラグランジュ（Joseph-Louis Lagrange、1736-1813年）によるラグランジュ微分 

	  

です。ここで、右辺第一項 はラグランジュ微分の時間項と呼ばれ、右辺第二項 

	  

はラグランジュ微分の対流項（あるいは移流項）と呼ばれている。ラグランジュ微分は対

流項のために一般的には非線形です。 

　キルヒホッフ理論やヘルムホルツ理論は線形長波長近似の理論です。 

　内半径 が一様の直管の中を伝わる波長が に比べて充分長い（長波長近似の）音波で

はラグランジュ微分が簡単になる。長波長近似では 

	  

なので、対流項は	  

	  

となり、ラグランジュ微分は 

	  

です。 

　次に長波長近似のラグランジュ微分の線形近似を議論する。振動している物理量 の時

間平均を とし、時間平均 からのずれ を改めて とすると、長波長近似の対流項 

	  

の線形近似は 

	  

です。 

　従って、線形長波長近似のラグランジュ微分は 

ω

ω θ Z ̂p⟨ ̂u⟩r

u X

DX
Dt

≡
∂X
∂t

+ (u∇)X

∂X /∂t
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です。線形長波長近似によりラグランジュ微分がかなり簡単になった。 

　振動運動する流体要素の振動中心からの変位 については、 なので とな

り、 

	  

です。このことは時間項が対流項に比べて充分大きいこと 

	  

を意味するので、 

	  

です。この右辺は 

	 (波数)-1(角周波数)-=  

程度なので、長波長線形近似のラグランジュ微分は 

	  

を意味する。長波長線形近似では、マッハ数（ ）が充分小さいので、衝撃波の可能

性が無い。 

　簡単のために、特に断らない限り、線形長波長近似のラグランジュ微分をラグランジュ

微分と略記するとともに、 を と略記する。 を考慮すると、変位速度は

成分だけが有限だからです。 

　振動運動する流体要素の速度 も振動する。 のラグランジュ微分 

	  

はヘルムホルツ理論とキルヒホッフ理論の共通の仮定（ ）により 

	  

です。 

　ヘルムホルツ理論とキルヒホッフ理論には、 以外にも、共通の仮定がある。時間

平均圧力 と時間平均温度 とは一様（ かつ ）も共通の仮定です。 

　流体要素の圧力も振動する。時間平均圧力 からのずれ の時間変化はラグランジュ微

分 

	  

です。ヘルムホルツ理論とキルヒホッフ理論との共通の仮定 により 

	  

DX
Dt

=
∂X
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+ uz ∇z Xm

ξ ξm = 0 uz ∇ξm = 0
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=
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です。 

　流体要素の温度も振動する。時間平均温度 からのずれ の時間変化はラグランジュ微

分 

	 	 (8.8) 

です。ヘルムホルツ理論とキルヒホッフ理論に共通の仮定 により 

	  

です。 

　流体要素の密度も振動する。時間平均密度 からのずれ の時間変化はラグランジュ微

分 

	  

です。 に着目すると 

	  

なので、 

	 	 (8.9) 

かつ 

	  

です。ここで 

	  

と 

	  

とは、それぞれ、等温圧縮率と熱膨張率です。 

　ヘルムホルツ理論とキルヒホッフ理論に共通の仮定（ かつ ）により、

なので 

	  

です。 

　流体要素のエントロピーも振動する。時間平均エントロピー からのずれ の時間変化

はラグランジュ微分 

	 	  

です。 に着目すると 
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なので 

	 	 (8.10) 

かつ 

	  

です。ヘルムホルツ理論とキルヒホッフ理論に共通の仮定（ かつ ）によ

り 

	  

なので、 

	  

です。 

　このように、ヘルムホルツ理論とキルヒホッフ理論ではラグランジュ微分をオイラー微

分に置き換えることが出来る。このことは、ヘルムホルツ理論とキルヒホッフ理論とに共

通の仮定（ かつ かつ ）の結果です。 

8.3.　キルヒホッフ理論の基本方程式 
　振動圧力 と振動流速 と振動温度 との３変数に対応して、基本方程式は運動方程式

（運動量保存則）と連続の式（質量保存則）と熱輸送の一般式（エネルギー保存則）の３

式です。 

　基本方程式の線形近似を議論する。 

　流体要素の運動方程式（運動量保存則）はナヴィエ・ストークスの式です。ナヴィエ・

ストークスの式の線形長波長近似は 

	 	 (8.11) 

です。ここで は動粘性係数です。線形近似なので(8.11)の左辺は と同じです。 は

振動中心の位置が無限小だけ異なる流体要素間の無限小圧力差です。同様に変分 は

振動中心の位置が径方向に無限小だけ異なる流体要素間の無限小速度変化です。ナヴィ

エ・ストークスの式の線形長波長近似(8.11)は基本方程式の一つあり、振動圧力 と振動

流速 との関係です。(8.11)は振動温度 を含まない。 

　次に、連続の式（質量保存則） 
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	 	 (1.1) 

すなわち 

	  

の線形近似 

	  

は、 に着目して 

	 	 (8.9) 

を使うと、 

	 	 (8.12) 

です。連続の式（質量保存則）の線形近似(8.12)も基本方程式の一つであり、振動圧力 と

振動温度 と振動流速 との関係式です。 

　単位体積の流体のエントロピー変動は、ヘルムホルツ理論とキルヒホッフ理論に共通の

仮定 により、流路断面内での熱伝導による熱流の結果です。流路断面内での熱輸

送の一般式（エネルギー保存則）は 

	  

です。ここで、 は熱伝導度です。熱伝導度の替わりに、熱拡散係数 

	  

を導入すると、流路断面内での熱輸送の一般式（エネルギー保存則）は、 

	 	 (8.13) 

です。(8.13)は流路断面内での振動エントロピー と振動温度 との関係です。 

　 に着目すると 

	  

なので流路断面内での熱輸送の一般式(8.13)は 

	  

です。さらに、 

	  

を使うと 

	 	 (8.14) 

です。振動圧力 と振動温度 と振動流速 との関係式(8.14)も基本方程式の一つです。 
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　ヘルムホルツ理論キルヒホッフ理論との共通の仮定（ と ）により、

と とは、それぞれ、 と と同じです。 

　管内音波を議論するにあたり、振動圧力 と振動流速 と振動温度 の3変数に対応してナ

ヴィエ・ストークスの式と連続の式（質量保存則）と流路断面内での熱輸送の一般式（エ

ネルギー保存則）の3式の線形近似が得られた。ナヴィエ・ストークスの式の線形近似は 

	 	 (8.11) 

です。連続の式（質量保存則）の線形近似は 

	 	 (8.12) 

です。流路断面内での熱輸送の一般式（エネルギー保存則）の線形近似は 

	 	 (8.14) 

です。 

　連続の式（質量保存則）の線形近似(8.12)と流路断面内での熱輸送の一般式（エネル

ギー保存則）の線形近似(8.13)あるいは(8.14)は、温度のラグランジュ微分 を通して、

に比例する項を含むが、ヘルムホルツ理論やキルヒホッフ理論では共通の仮定

（ かつ ）により、 に比例する項はゼロです。 

　 を考慮すると、ヘルムホルツ理論やキルヒホッフ理論は図6.1の第二象限と第三

象限との境界線に対応する。 

　自由空間中の音波と違って、管内音波は管壁の影響を受ける。管壁は剛体とすると、管

壁に接している（ ）流体要素は粘性のために静止しているからです。このことについ

ては次の「8.4.　振動圧力pと振動流速u：径方向分布」で議論する。また管壁の温度は振

動しないとすると、管壁に接している（ ）の流体要素の温度振動もゼロです。この

ことについては「8.5.　振動温度 と振動エントロピー ：径方向分布」で議論する。 

8.4.　振動圧力pと振動流速u：径方向分布 

　管内流体が振動運動しても管壁は動かない、つまり、管壁は剛体とする。また、有限の

粘性のために、管壁に接している流体は滑らない、つまり、管内流体の振動運動による振

動流は層流とする。さらに、振動運動の軸対象性を考慮すると振動圧力 と振動流速 の径

方向分布が議論できる。 
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　8.4.1.　振動圧力pの径方向分布 

　長波長近似の仮定により、振動圧力 は流路断面内で一様（ ）です。圧力振幅

も径方向で一様（ ）です。振動圧力 の流路断面平均は 

	  

です。 

　周波数応答に優れた圧力センサーが無かったクントの頃とは異なり、小型圧力センサー

が発達した現代では、振動圧力 の測定は容易です。 

　8.4.2.　振動流速 の径方向分布 

　ナヴィエ・ストークスの式の線形近似(8.11)を変形すると 

	  

すなわち 

	 	 (8.15) 

です。 

　(8.15)は について２階の偏微分方程式なので二つの境界条件が必要です。一つは、粘性

のために、管壁に接している流体が動けないこと、すなわち、管壁に接触している流体の

速度については です。もう一つの境界条件は、速度 の軸対称性 

	  

です。 

　径方向座標 に依存する未知の関数 を使って を 

	 	 (8.16) 

ただし 

	  

とすると、 

	  

です。これが任意の で成り立つためには 

	 	 (8.17) 

が必要で、(8.17)の場合には 

	  

すなわち 
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	 	 (8.18) 

です。 

　(8.17)は について２階の偏微分方程式です。壁（ ）での境界条件（ ）と

軸対称性 

	  

とを考慮すると、(8.17)の解は第１種ベッセル関数を使って 

	  

ただし 

	  

となる。従って 

	  

です。 

　外力により振動運動させられている管内流体は、外力が消失すると粘性のために運動エ

ネルギーが徐々に散逸して静止する。 

　運動エネルギーの散逸速度を特徴づける緩和時間は流体の動粘性係数 と流路半径 と

から作られる粘性緩和時間 

	  

です。これを使うと 

	  

です。 は粘性緩和時間 で無次元化した角周波数です。 

	  

は粘性境界層の厚さと呼ばれる。管壁からの距離が 程度のところでは粘性の影響が顕著

だからです。 が意味を持つのは の場合だけです。 

　 の 依存性を図8.1に示した。粘性の影響が小さい では について一次

までの近似で 

	  

です。粘性の影響が大きい では、 について二次までの近似で、 
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です。 では簡単な近似式が見当たらない。 

　20世紀末には、管内音波に伴う振動流速の管内分布が測定可能となった。レーザードッ

プラー流速計のお陰です。測定結果は(8.16)を支持している。 
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  (8.11) 

です。連続の式（質量保存則）の線形近似は 

  (8.12) 

です。流路断面内での熱輸送の一般式（エネルギー保存則）の線形近似は 

  (8.14) 

です。 

　連続の式（質量保存則）の線形近似(8.12)と流路断面内での熱輸送の一般式（エネル

ギー保存則）の線形近似(8.13)あるいは(8.14)は、温度のラグランジュ微分 を通して、
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図8.1　 の 依存性：下図は片対数表示、上図は両対数表示です。上
図のほうが漸近線の様子がわかり易い。 では粘性の影響が
小さいが、 では粘性の影響が大きい。
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8.5.　振動温度と振動エントロピー：径方向分布 
　管壁の熱容量が充分大きくて、管内流体が振動運動しても管壁の温度は揺るがないとす

る。さらに、振動運動の軸対象性を考慮すると振動温度 と振動エントロピー の径方向分

布が議論できる。 

　8.5.1.　振動温度の径方向分布 

　振動温度 の径方向分布を議論するにあたり、流路断面内での熱輸送の一般式の線形近

似 

	 	 (8.14) 

を使う。 

　(8.14)も について２階の偏微分方程式です。２階の偏微分方程式に対応して二つの境界

条件がある。第一の境界条件は管壁の熱容量が大きいために管壁の温度は揺るがない、す

なわち、管壁に接触している流体の温度も揺るがない とする。二番目の境界条件

は、温度変動 の軸対称性 

	  

です。 

　クントの実験に対応する では、(8.14)は 

	  

すなわち 

	  

となる。これはナヴィエ・ストークスの式の線形近似(8.15)と同じ形の偏微分方程式です。

二つの境界条件も同じ形です。 

　従って、 の場合の解は 

	 	 (8.19) 

ただし 

	 	 (8.20) 

です。熱緩和時間 

	  

は粘性緩和時間 に対応し、 が意味を持つのは の場合だけです。熱境界層の厚

さ 
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は粘性境界層の厚さ に対応する。管壁からの距離が 程度のところでは熱伝導の影響が

顕著だからです。 が意味を持つのは の場合だけです。 

　従って、(8.19)により 

	 	 (8.21) 

です。振動温度 の 依存性は と同じです。 

　気体で熱拡散係数 は温度の増加関数なので、熱緩和時間 は時間平均温度 の減少関

数です。 

　8.5.2.　振動エントロピーの径方向分布 

　振動エントロピー のラグランジュ微分を調べる。 

　 に着目すると 

	 	 (8.22) 

なので 

	  

です。この両辺の 依存性は同じです。この右辺の振動温度 が径方向の位置 に依存するの

で、左辺の振動エントロピー も径方向の位置 に依存する。 

　従って、ヘルムホルツ理論とキルヒホッフ理論では、振動エントロピー の 依存性は振

動温度 の 依存性と同じです。 

8.6.　管内音波の分散 

　8.6.1.　振動圧力と振動流速の軸方向変化 

　振動圧力 の軸方向変化は、運動方程式(8.18)の線形近似から 

	 	 (8.23) 

です。ここでは を使った。 

　質量保存則の線形近似 

	 	 (8.12) 

の流路断面平均を使うと、振動流速 の軸方向変化は 

	  

です。ここで(8.23)を使い、平衡状態の熱力学の恒等式 
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	 	 (8.24) 

を思い出すと、 

	  

すなわち 

	 	 (8.25) 

です。(8.25)では、 と恒等式 とを使った。 

　8.6.2.　管内音波の音速 

　運動方程式の線形近似 

	 	 (8.23) 

と質量保存則の線形近似 

	 	 (8.25) 

とから、 を消去すると 

	  

となる。これは、(8.6)を使うと 

	 	 (8.26) 

となる。 

　従って、自由空間中( )では 

	  

となり	  

	 	 (8.6) 

が明かです。 

　 と とで、(8.26)の意味がかなり異なる。 では、 や が1

に比べて充分小さいので、(8.26)は自由空間中の音波の波動方程式 

	  

に近い。逆に、 では、 について一次までの近似で 

	  

なので、(8.26)は 

	  

となるが 
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に注意すると 

	  

です。これは 

	  

を拡散係数とする拡散方程式です。 

　中間の では、波動方程式も拡散方程式も良い近似ではないので、振動運動

する流体の挙動のイメージが判然としない。 

　管内音波で社、(8.26)によれば、 では複素位相速度を とすると 

	  

です。これが「有限の熱伝導度を考慮するべき」とのクントの指摘に応えたキルヒホッフ

理論（1868年）の結果です。この結果は、定量的にもクントの実験結果と一致した。 

　ヘルムホルツ理論では だけで無く をも仮定した。このことは あ

るいは を仮定したことになるので 

	  

です。これでは自由空間中の音速 との関係が不連続です。 

　後に、キルヒホッフ理論は管壁の温度が一様（ ）の場合の音響学の基本とされ

た。例えば、レイリー郷（John William Strutt, 3rd Baron Rayleigh、1842-1919年）の

名著”The Theory of Sound”（初版1877年、改訂版1894~96年）がある。 

　しかし、20世紀迄の実験でキルヒホッフ理論の有効性が確認されたのは や

の場合だけだった。ベッセル関数の値を評価することは、 や で

は容易だが、 や では難しかったからです。幅広い領域でキルヒホッフ理

論の有効性を確認するには、 や でベッセル関数の値が正確に評価できる

ことが必要です。これを可能とするにはデジタル計算機と計算プログラムの進歩を待つ必

要がある。実際、広い 領域にわたりキルヒホッフ理論の妥当性を実験で確認したは、

矢崎らの2007年論文 です。こうして、キルヒホッフ理論は頼りになる理論となった。 4
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  T. Yazaki, Y. Tashiro and T. Biwa: Measurements of sound propagation in narrow tubes, Proc. R. 4

Society A 463 (2007) pp.2855-2862
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8.7.　共鳴周波数 
　キルヒホッフ理論は管の内半径 と管の温度 が一様な長い管の中の音波を扱う線形理

論です。 

　閉管とは両端が閉じた管です。クント管は良い近似で閉管です。閉管の共鳴周波数は、

では、キルヒホッフ理論を使うことでがかなり正確に予想できることが明らかに

なった。 

　管の温度 が異なる管を接続した、管の温度 に段差のある管の共鳴周波数も推定でき

る。管の温度 が一様な場所での解を、異なる の管の接続部で接続すれば良い。こうし

て、管の内半径 や温度 に段差のある管でもキルヒホッフ理論が役立つことが判明し

た。 

　開管は管の両端あるいは片端が開いた管です。開管の共鳴周波数はキルヒホッフ理論に

よる予想からわずかにズレる。このズレは開口端補正と呼ばれている。開口端補正は、経

験によれば、振幅に依存し、管の内半径 の７割程度です。開口端補正をキルヒホッフ理

論で議論することは困難です。開口端の近くでは線形近似が破綻するからです。 

　開口端補正を別にすれば、キルヒホッフ理論を使うことで、内半径 の異なる管を接続

した、内半径 に段差のある管の共鳴周波数も推定できる。その典型がヘルムホルツ共鳴

器です。内半径 が一様な場所での解を異径管の接続部で接続すれば良い。 

r0 Tm

ωτα ≫ 10

Tm Tm

Tm Tm

r0 Tm

r0

r0

r0

r0

- /  -68 154



9.　平衡状態の熱力学：ギブズ 
　クラウジウスが示量性状態量としてのエントロピーを導入した1864年に戻る。 

　平衡状態の熱力学で使う示量性状態量は、流体力学と同様に、物体の単位質量当たりの

エネルギーを とし、単位質量当たりのエントロピーを とするのが普通です。 

　平衡状態ではエントロピー生成密度はゼロ（ ）です。非平衡状態（ ）は安定

な平衡状態（ ）へ向かって変化する。このことは後のエントロピー生成最小の法則

の一例です。安定な平衡状態に達するまでに要する特徴的時間を緩和時間と呼ぶことにす

る。平衡状態での実験を行うには緩和時間に比べて充分長い時間待つ必要がある。 

　平衡状態の熱力学が扱う状態変化は準静的可逆変化だけです。準静的変化では

かつ です。準静的変化を可能とするための思考上の装置は、 と とに

対応して、それぞれ、熱浴と仕事浴です。さらに、可逆変化（ ）では 

	 	 (9.1) 

です。 

　準静的可逆変化には準静的定積可逆変化（ ）と準静的断熱可逆変化（ ）と

がある。準静的定積可逆変化では、単位質量の物体のエントロピーが だけ増加すると、

この物体のエネルギーが だけ増加して、外界（熱浴）のエネルギーが だけ減少す

る。準静的断熱可逆過程（ ）では、物体の体積が だけ増加すると、外界（仕事

浴）のエネルギーは だけ増加し、物体のエネルギーが だけ減少する。物体から外

界（仕事浴）への出力仕事は です。 

　準静的可逆変化では、両者を合わせて着目している物体のエネルギー変化は 

	 	 (7.2) 

です。数学的には と との解析関数 を想定すると 

	 　かつ　 	 (9.2) 

です。 

9.1.　平衡曲面 
　幾何学的イメージは解析的表現よりも役立つことがある。例えば、電磁気学ではファラ

デー（Michael Faraday、1791-1867年）が真空の空間に電気力線と磁力線を想定した。
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電磁場概念の可視化です。ファラデーの力線イメージはマクスウェルによる電磁気学の建

設（1864年）に貢献した。マクスウェルの電磁気学は、主に、電磁場概念の解析学的表

現です。1864年はクラウジウスが示量性状態量としてのエントロピーを導入した年で

す。。 

　平衡状態の熱力学は主にギブズ（J. Willard Gibbs、1839-1903年）によって建設され

た。ギブズは、1873年論文で、 空間内の平衡曲面 をイメージして平衡状

態の熱力学を可視化した。 

	 　かつ　 	 (9.2) 

によれば、 と とは平衡曲面 の傾きに対応する。 

　ギブズの1873年論文に感銘を受けたマクスウェルは、ギブズの平衡曲面を説明する粘

土模型（Maxwell's thermodynamic surface）を作り、これを基に二つの石膏模型を作成

した（1874年）。一つはマクスウェルが勤めたキャベンディッシュ研究所に展示され、他

の一つはギブズに贈られ、ギブズが勤めたイェール-大学に保存されている。 

　同じ頃、ボルツマン（Ludwig E. Boltzmann、1844-1906年）はボルツマンの関係式を

提唱し、示量性状態量としてのエントロピー に統計力学的意味づけを行った（1872~5

年）。ボルツマンによれば、平衡状態のエントロピー は微視的状態の数の対数に比例す

る。古典論では微視的状態は連続なので微視的状態の数は意味不明の概念です。エントロ

ピー のボルツマンによる解釈は20世紀の量子力学を待つ必要があった。微視的状態の数

とは、巨視的物体の量子力学的状態の数だったのです。量子力学的状態は離散的なので微

視的状態の数が意味を持つ。ボルツマンも、カルノーと同様に、歴史を30年ほど先取りし

ていたことになる。 

　平衡状態の熱力学に戻る。 

　 空間の平衡曲面 は状態方程式に対応する。 

	  

なので 

	 	 (9.3) 

です。ここで、熱膨張率 

	 	 (1.3) 
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と等温圧縮率 

	 	 (1.2) 

とを使った。 空間内の平衡曲面 の傾きは や とに対応する。 

　 空間内の平衡曲面 に着目すると 

	  

ですが 

	 	 (8.22) 

です。ここでは定圧比熱 

	  

と 

	  

を使った。後者の等号は後に述べるマクスウェル関係式の一つ(9.13)です。 空間

内の平衡曲面の傾きは や に対応する。 

　このように、平衡状態の状態量間の関係は平衡曲面の幾何学的性質として認識され、微

分幾何学が役立つ。 

　三次元空間の滑らかな曲面のように、３個の変数（ と と ）が一つの関数関係にある

場合には、 

	 	  

あるいは 

	 	 (9.4) 

が成り立つ。なぜなら、 

	  

から、 の場合の比 、すなわち として(9.4)が得られるからです。(9.4)

は三次元空間の滑らかな曲面の傾きに関わる重要な関係です。 

　平衡状態の状態量間の変数変換には(9.4)が便利です。例えば、平衡曲面 に(9.4)

を使うと 
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なので、断熱圧縮率は 

	  

です。ここで 

	  

と 

	  

とを使うと 

	  

です。従って 

	 	 (9.5) 

です。これは平衡状態の熱力学の恒等式の一つです。 

9.2.　マウスウェルの関係式 
　ギブズが次に発表したのは、1876年と1878年の2回に分けて発表された「不均一な物

質系の平衡に就いて」”On the Equilibrium of Heterogeneous Substances”という論文

です。この論文では、熱力学的ポテンシャルとして、エンタルピー、ヘルムホルツの自由

エネルギー、ギブズの自由エネルギーなどに相当する概念を導入して、相平衡や相律など

も議論している。 

　この論文で平衡状態の熱力学がほぼ完成した。後の熱力学の教科書はこの論文の抜粋に

近い。しかし、ギブズの考え方がヨーロッパに普及するにはギブズ論文のドイツ語訳

（1888年）やフランス語訳（1899年）まで待つ必要があった。ギブズ論文が掲載された

のはヨーロッパの無名誌だったことと、多くの読者が英語に馴染みがなかったためです。

19世紀末から20世紀初頭にかけて大きな進展を見せた物理化学の中心テーマは平衡状態

の熱力学を使った化学平衡の議論でした。 

　平衡曲面 についての２階の偏微分が連続で偏微分の順序によらないなら 

	  

です。これと(9.2)から 
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∂V )

p

( ∂S
∂p )

V
= ( ∂S

∂T )
V

( ∂T
∂p )

V
=

CV

T ( ∂T
∂p )

V

( ∂S
∂V )

p
= ( ∂S

∂T )
p

( ∂T
∂V )

p
=

Cp

T ( ∂T
∂p )

p

( ∂S
∂p )

V
/( ∂S

∂V )
p

=
CV

Cp ( ∂T
∂p )

V
/( ∂T

∂V )
V

=
CV

Cp ( ∂V
∂p )

T
=

CV

Cp
VKT

γ ≡
Cp

CV
=

KT

KS

U(S, V )
∂

∂V ( ∂U
∂S )

V
=

∂
∂S ( ∂U

∂V )
S
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	 	 (9.6) 

です。これはマクスウェル関係式の一つです。 

　エネルギー のルジャンドル変換の一つであるエンタルピー 

	  

を導入すると 

	  

です。数学的には 

	 　かつ　 	 (9.7) 

です。 空間内の平衡曲面 をイメージすると、 と とはこの曲面の傾きで

す。 

　定圧過程（ ）が準静的可逆変化（ ）となるには、この物体が圧力 の仕事浴

と接触していることが必要です。物体の体積変化 による物体が外界にする仕事 を仕

事浴が吸収する。 

　エンタルピー についての２階の偏微分が連続で偏微分の順序によらないなら 

	  

です。これと(9.7)とから 

	 	 (9.8) 

です。これもマクスウェル関係式の一つです。なお、エンタルピー はエンタルピーと命名

される前から、熱（heat）の意味で記号 が使われていた。エンタルピーとの命名はオン

ネス（H. Kamerlingh Onnes、1853-1926年）による。エンタルピーの語源はギリシア語

で内部を表す(en)+熱を表す(thalp)にある。 

　エネルギー のルジャンドル変換の一つであるヘルムホルツの自由エネルギー 

	  

を導入すると 

	  

です。数学的には 

	 　かつ　 	 (9.9) 

( ∂T
∂V )

S
= − ( ∂p

∂S )
V

U(S, V )

H ≡ U + pV

d H = dU + d(pV ) = TdS + Vdp

T = ( ∂H
∂S )

p
V = ( ∂H

∂p )
S

S − p − H H(S, p) T V

dp = 0 σS = 0 p

dV pdV

H(S, p)
∂

∂p ( ∂H
∂S )

p
=

∂
∂S ( ∂H

∂p )
S

( ∂T
∂p )

S
= ( ∂V

∂S )
p

H

H

U(S, V )

F ≡ U − TS

dF = dU − d(TS ) = − SdT − pdV

S = − ( ∂F
∂T )

V
p = − ( ∂F

∂V )
T
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です。 空間内の平衡曲面 をイメージすると、 と とはこの曲面の傾き

に対応する。なお、自由エネルギーとの命名（1882年）はヘルムホルツによる。 

　ヘルムホルツの自由エネルギー についての２階の偏微分が連続で偏微分の順序に

よらないなら 

	  

です。これと(9.7)とから 

	 	 (9.10) 

です。これもマクスウェル関係式の一つです。	  

　等温過程（ ）が準静的可逆変化（ ）の場合には、この物体から取り出せる

仕事は 

	  

です。等温過程（ ）で物体から取り出せる仕事は準静的可逆変化（ ）の場合

に最大となり、最大仕事は です。準静的等温可逆変化を実現させるためにはこの物体

が温度 の熱浴と接触していることが必要です。物体のエントロピー変化 による物体が

外界から吸収するエネルギー を熱浴が提供する。 

　統計力学の標準的計算では分配関数を使ってヘルムホルツの自由エネルギー を求

める。その後、エネルギー を求めるのに関係式 

	  

がよく使われる。 

　エンタルピー あるいはヘルムホルツの自由エネルギー のルジャンドル変換

であるギブズの自由エネルギー 

	  

を導入すると 

	  

です。数学的には 

	 　かつ　 	 (9.11) 

です。 空間内の平衡曲面 をイメージすると、 と とはこの曲面の傾きに

対応する。 

T − V − F F(T, V ) −S −p

F(T, V )

∂
∂V ( ∂F

∂T )
V

=
∂

∂T ( ∂F
∂V )

T

( ∂S
∂V )

T
= ( ∂p

∂T )
V

dT = 0 σS = 0

pdV

dT = 0 σS = 0

pdV

T dS

TdS

F(T, V )

U

U = − T 2 ∂
∂T ( F

T )

H(S, p) F(T, V )

G ≡ F + pV = H − TS

dG = dF + (pdV + Vdp) = − SdT + Vdp

S = − ( ∂G
∂T )

p
V = ( ∂G

∂p )
T

T − p − G G (T, p) −S V
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　 についての２階の偏微分が連続で偏微分の順序によらないなら 

	  

です。これと(9.7)とから 

	 	 (9.12) 

です。これもマクスウェル関係式の一つです。 

　（一次）相転移では や が共通の二相は と とが異なる。 の差 と の差 の間には 

	  

の関係がある。 は相変化の僭熱です。 

　液相と気相などの二相のエントロピー差 と体積差 を使うとギブズの自由エネル

ギーの差は 

	  

です。相平衡では 

	 =0 

つまり 

	  

です。例えば、飽和蒸気圧曲線の傾きは です。 

　単一成分系のマクスウェル関係式は 

	 	 (9.6) 

と 

	 	 (9.8) 

と 

	 	 (9.10) 

と 

	 	 (9.12) 

の四つです。マクスウェル関係式が成り立つのは 、 、 、 の２階の変微分が連続で偏

微分の順序によらない場合です。 

　(9.12)に熱膨張率 

G (T, p)

−
∂

∂p ( ∂G
∂T )

p
=

∂
∂T ( ∂G

∂p )
T

−( ∂S
∂p )

T
= ( ∂V

∂T )
p

T p S V S ΔS V ΔV

ΔU ≡ TΔS − pΔV

TΔS

ΔS ΔV

ΔG = − ΔSdT + ΔVdp

ΔG

dp
dT

=
ΔS
ΔV

dp /dT

( ∂T
∂V )

S
= − ( ∂p

∂S )
V

( ∂T
∂p )

S
= ( ∂V

∂S )
p

( ∂S
∂V )

T
= ( ∂p

∂T )
V

−( ∂S
∂p )

T
= ( ∂V

∂T )
p

U H F G
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	 	 (1.3) 

を使うと 

	 	 (9.13) 

となる。これは平衡状態の熱力学の恒等式の一つです。 

　 に着目すると、 

	  

なので 

	  

です。ここで定圧比熱 

	  

を使った。さらに(9.13)を使うと 

	 	 (8.22) 

です。 

　 に着目すると 

	  

なので 

	  

です。ここで断熱圧縮率 

	  

を使った。更に、(8.22)を使うと 

	  

です。これを 

	 	 (9.3) 

と比較すると 

	 　かつ　  

です。すなわち 

β ≡
1
V ( ∂V

∂T )
p

−( ∂S
∂p )

T
= ( ∂V

∂T )
p

= Vβ

S(T, p)

dS = ( ∂S
∂T )

p
dT + ( ∂S

∂p )
T

dp

dS =
Cp

T
dT + ( ∂S

∂p )
T

dp

Cp ≡ T ( ∂S
∂T )

p

dS =
Cp

T
dT − Vβdp

V(S, p)

dV = ( ∂V
∂S )

p
dS + ( ∂V

∂p )
S

dp

dV = ( ∂V
∂S )

p
dS − VKSdp

KS ≡ −
1
V ( ∂V

∂p )
S

dV = ( ∂V
∂S )

p

Cp

T
dT − [( ∂V

∂S )
p

Vβ + VKS] dp

dV = VβdT − VKT dp

( ∂V
∂S )

p
=

VβT
Cp ( ∂V

∂S )
p

=
KT − KS

β
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	 	 (9.14) 

です。これも平衡状態の熱力学の恒等式の一つです。 

　状態方程式は と と の関係なので 

	  

です。この右辺に等温圧縮率 

	 	 (1.2) 

と熱膨張率 

	 	 (1.3) 

とを使うと 

	  

となる。最後に熱力学のマクスウェル関係式(9.10)を使うと 

	 	 (9.15) 

です。これも平衡状態の熱力学の恒等式の一つです。 

　乾いたフェーン現象の説明に登場する準静的断熱圧縮による温度変化 を調べる

には、熱力学のマクスウェルの関係式 

	 	 (9.8) 

えば良い。(9.8)と、(9.15)から 

	 	 (8.24) 

が得られる。これも平衡状態の熱力学の恒等式の一つです。 

　変数変換に便利なマクスウェル関係式が常に成り立つとは限らないことに注意して欲し

い。例えば、気相液相転移の臨界点はマクスウェル関係式が成り立たない特異点です。 

( ∂V
∂S )

p
=

VβT
Cp

=
KT − KS

β

p V T

( ∂T
∂p )

V
= − ( ∂V

∂p )
T

/( ∂V
∂T )

p

KT ≡ −
1
V ( ∂V

∂p )
T

β ≡
1
V ( ∂V

∂T )
p

( ∂T
∂p )

V
=

KT

β

( ∂S
∂V )

T
= ( ∂p

∂T )
V

=
KT

β

(∂T /∂p)S

( ∂T
∂p )

S
= ( ∂V

∂S )
p

( ∂T
∂p )

S
= ( ∂V

∂S )
p

=
VβT
Cp

=
(γ − 1)KS

β

- /  -77 154



9.3.　局所平衡 
　平衡状態にある物体の熱力学的状態は平衡曲面上の一点で表現される。物体の熱力学的

状態は一組の示量性状態量量 で表現できるからです。この物質が準静的に可逆変

化（ ）して別の平衡状態に変わると、平衡曲面上の別の点で表現される。 

　大きい物体を小物体の集まりとする。個々の小物体がそれぞれ平衡状態にあるなら、そ

れぞれ、平衡曲面上の点で表現される。単相の大きい物体が平衡状態にあるなら、個々の

小物体の状態は全て平衡曲面上の同じ一点で表現される。このために平衡状態では温度や

圧力が一様です。 

　単相の大きい物体が全体としては非平衡状態の場合には、この大きい物体の状態を平衡

局面上の一点で表現することはできない。しかし、大きい物体を構成する個々の小物体の

状態が平衡曲面上の異なる点で表現されるなら、非平衡状態にある大きい物体は平衡曲面

上の多数の点の集まりとして表現される。 

　大きい物体を構成する個々の小物体の状態が、それぞれ、平衡曲面上の点で表現される

状態を局所平衡状態と呼ぶ。 

　局所平衡状態では大きい物体全体としては平衡状態ではないので、大きい物体の状態は

平衡曲面上の多数の点の集まりで表現され、温度あるいは圧力が一様ではない（

あるいは ）。例えば では熱伝導という不可逆過程のために、エントロピー

流密度 が有限となり、 となる。 の場合には小物体の移動が生じて、隣り合

う小物体の移動速度が異なると摩擦熱が発生するので となる。 

　実際問題として身の回りの多くの現象で、小物体の大きさを小さすぎないように選ぶな

ら、良い近似で局所平衡が成り立っている。小物体の大きさの下限は気体分子運動論に現

れる平均自由行程の程度でしょう。局所平衡の仮定のもとに成り立つとされる流体力学は

小物体の時刻依存性も議論するが、短すぎる時間間隔では小物体が局所平衡に達しない。

時間間隔の最小値は、小物体が局所平衡に到達する緩和時間程度であり、気体分子運動論

に現れる平均自由時間の程度でしょう。 

　現象毎に小物体の大きさの下限と緩和時間を意識している必要があるが、局所平衡の条

件を満足する現象は多岐に及ぶので、広範な現象に平衡状態の熱力学が使える。平衡状態

の熱力学を変数変換だけに使うのは勿体ない。 

(S, V, U )

σS = 0

∇T ≠ 0

∇p ≠ 0 ∇T ≠ 0

S̃ σS ≠ 0 ∇p ≠ 0

σS ≠ 0
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9.4.　ラグランジュ微分の対流項 
　流体力学は流体要素の運動を議論する。 

　大きい体積の流体を流体要素に分割する。隣り合う流体要素の間では平衡状態が破綻し

あるいは であっても、個々の流体要素については温度 や圧力 が意味を持

つ場合には局所平衡と呼ぶ。温度や圧力のような示強性状態量は平衡状態の指標だからで

す。流体要素のサイズが小さければ局所平衡に要する緩和時間も短い。 

　流体力学の本来の視点は、オイラー微分ではなくて、ラグランジュ微分です。ラグラン

ジュ微分は、対流項 のために、一般的には非線形です。ラグランジュ微分の意味を

議論する。ラグランジュ微分は、 の場合には、 

	  

でした。この右辺第二項 は流体要素の移動による変化なので対流項（あるいは移流

項）と呼ばれる。 

　対流項 の意味を調べよう。示強性状態量が一様な場合（ あるいは

）には、個々の流体要素の変化は準静的です。温度や圧力のラグランジュ微分に現

れる対流項の値は準静的変化ではゼロだからです。 

　速度 で運動している単位質量の流体要素に着目すると、着目した流体要素の密度の時

間変化は、密度 のラグランジュ微分 

	  

です。 

	  

なので、この対流項も準静的変化（ かつ ）では零です。 

　対流項は環境変化を表現している。速度 で移動する流体要素は、 や などで

表現される環境変化に順応しようとするからです。 

　流体の振動運動では、対流項の線形近似は や となる。キルヒホッフ理論の

ように かつ の場合には、対流項の線形近似の値はゼロなので、環境変化

が無視できる。従って、キルヒホッフ理論が扱う流体の運動はほぼ準静的です。 

　なお、後に「11. 拡張キルヒホッフ理論：クラマース」で述べる拡張キルヒホッフ理論

では なので、流体の運動は準静的とは言えない。 

∇T ≠ 0 ∇p ≠ 0 T p

(u∇)X

ux = uy = 0
DX
Dt

≡
∂X
∂t

+ uz ∇z X

uz ∇z X

uz ∇z X ∇T = 0

∇p = 0

uz

ρ
Dρ
Dt

≡
∂ρ
∂t

+ uz ∇z ρ

∇z ρ = ( ∂ρ
∂p )

T
∇z p + ( ∂ρ

∂p )
p
∇zT

∇zT = 0 ∇z p = 0

uz uz ∇zT uz ∇z p

uz ∇zTm uz ∇z pm

∇zTm = 0 ∇z pm = 0

∇zTm ≠ 0
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9.5.　孤立系の平衡状態：揺らぎ 
　平衡状態は安定ですが、小さな揺らぎ（fluctuation）がある。平衡状態が安定なために

は小さな揺らぎに対する復元力が必要です。 

　簡単のために孤立系を想定し、孤立系の平衡状態が揺らぎに対して安定であるための必

要条件を議論したい。 

　孤立系のエントロピー増大則によれば、孤立系のエントロピーは、増大して平衡状態に

到達する。同じことですが、孤立系のエントロピー は、平衡状態のエントロピー を越

えない： 

	  

すなわち 

	  

つまり、孤立系の揺らぎは孤立系のエントロピーを減少させることが必要です。揺らぎで

孤立系のエントロピーが減少すると、孤立系のエントロピー増大則により自発的に不可逆

過程が生じて、元の平衡状態に戻る。 

　孤立系の揺らぎが孤立系のエントロピーを減少させる（ ）ための必要条

件を調べよう。まず、孤立系を小さな部分系1と大きな部分系2とに分ける： 

	  

	  

　 を形式的に と の級数で表現すると、 

	  

なので 

	  

です。 

　エネルギー保存則により、孤立系のエネルギー は不変です。局所的エネルギーの揺ら

ぎ により、部分系1から部分系２へ だけのエネルギー移動がある場合を考えると、

かつ です。従って、 

	 	 (9.16) 

S Seq

S ≤ Seq

ΔS ≡ S − Seq ≤ 0

ΔS ≡ S − Seq ≤ 0

S = S1 + S2

U = U1 + U2

ΔS ≡ S − Seq ≤ 0 dU1 dU2

ΔS = ( ∂S1

∂U1 ) dU1 + ( ∂S2

∂U2 ) dU2 +
1
2 ( ∂2S1

∂U2
1 )(dU1)2 +

1
2 ( ∂2S2

∂U2
2 )(dU2)2 + ⋅ ⋅ ⋅

ΔS =
1
T1

dU1 +
1
T2

dU2 +
1
2

∂
∂U1 ( 1

T1 )(dU1)2 +
1
2

∂
∂U2 ( 1

T2 )(dU2)2 + ⋅ ⋅ ⋅

U

δU δU

dU1 = − δU dU2 = δU

ΔS = (−
1
T1

+
1
T2 ) δU +

1
2 [ ∂

∂U1 ( 1
T1 ) +

∂
∂U2 ( 1

T2 )](δU )2 + ⋅ ⋅ ⋅
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です。平衡状態の孤立系は温度 も圧力 も一様です。偏微分は平衡状態での偏微分なの

で、 です。つまり、(9.16)は、 について一次の項はゼロとなり、 

	 	  

です。 

　局所的エネルギーの揺らぎ の際に部分系の体積が不変（ ）な場合には、 

	  

なので、(9.17)は 

	  

です。 

　 の場合には について二次までの精度で です。経験によれば です

が、仮に、 だったら、 となり、孤立系の平衡状態は体積不変のエネルギーの

揺らぎに対して不安定です。 

　次に局所的エネルギーの揺らぎ の際に局所的体積の揺らぎ が有限の場合を議論す

る。この場合には、(9.16)は 

	 	 (9.17) 

となる。偏微分は平衡状態での偏微分であることを思い出すと、 かつ なの

で、 について一次の項はゼロです。 について二次の項には 

	  

を使い、体積の揺らぎ の間は温度は一定であることを使うと 

	  

なので、(9.17)は 

	 	  

です。従って、 のためには が必要であり、 の場合には

について二次までの精度で です。 

　経験によれば 

	  

T p

T1 = T2 δU

ΔS =
∂

∂U ( 1
T )(δU )2 + ⋅ ⋅ ⋅ ≤ 0

δU δV = 0
∂

∂U ( 1
T ) = −

1
T 2 ( ∂T

∂U )
V

= −
1

T 2

1
CV

ΔS = −
1

T 2

1
CV

(δU )2 + ⋅ ⋅ ⋅ ≤ 0

CV > 0 δU ΔS ≤ 0 CV > 0

CV < 0 ΔS > 0

δU δV

ΔS = (−
p1

T1
+

p2

T2 ) δV +
1
2 [ ∂

∂V1 ( p1

T1 ) +
∂

∂V2 ( p2

T2 )](δV )2 + ⋅ ⋅ ⋅
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ですが、仮に だったら平衡状態は体積の揺らぎに対して不安定です。 

　 や には重要な意味がある。 や という経験則は、孤立系が局所

的エネルギーの揺らぎ に対して安定なことを保証する。逆に、 あるいは

だったら、孤立系は局所的エネルギーの揺らぎ に対して不安定となり、安定な孤立系や

孤立系の平衡状態などの概念が無意味になる。 

　揺らぎの大きさは、気相液相転移の臨界点の近くを除けば小さい。この臨界点の近くで

は、等温圧縮率 が小さいので、体積の揺らぎが大きい。このことは臨界タンパク光

として知られている。 

KT < 0

CV > 0 KT > 0 CV > 0 KT > 0

δU CV < 0 KT < 0

δU

KT > 0
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10.　統計力学の影響 
　熱機関などを対象とした非平衡定常状態の熱力学は平衡状態の熱力学を産みだした。 

　19世紀後半に始まった空洞放射の研究は、熱力学と電磁気学の境界領域として進展し、

実験式としてのプランク（Max K.E.L. Planck, 1858-1947年）の放射式（1900年）とプ

ランク自身によるその統計力学的解釈（1900年）とを通して、量子統計力学と量子力学と

を産みだした。 

　量子統計力学は熱力学の示量性状態量の値や輸送係数の値を微視的に議論するのに貢献

したが、理想気体近似が意味を持つ場合すなわち構成粒子間の相互作用が小さい場合に限

られる。液相や固相のような粒子間相互作用が大きい系では、理想気体近似からの摂動展

開では済まない。 

　現代の量子統計力学は気相・液相・固相というに巨視的状態区分に頼っている。量子統

計力学を使うためには相毎に適当な準粒子とそのハミルトニアンを想定しなければならな

い。相毎に異なるハミルトニアンを統合した一般的ハミルトニアンは未だ見つかっていな

いからです。このことは物性物理学の大問題です 。 5

10.1. 熱力学第三法則 
　エントロピー を温度 でマクロ-リン展開すると 

	 	 (10.1) 

です。従って、充分低温での比熱は 

	 	 (10.2) 

となる。充分低温での比熱(10.2)は の値に依存しない。 

　ネルンスト（Walther Hermann Nernst、1864‒1941年）の熱定理（1906年）は 

	 	 (10.3)	 

すなわち 

	  

です。(10.1)にネルンストの熱定理(10.3)を使うと 

S T

S(T ) = S(0) +
dS
dT T=0

T +
1
2

d2S
dT 2

T=0
T 2 +

1
3!

d3S
dT 3

T=0
T3 + ⋅ ⋅ ⋅

T
dS
dT

=
dS
dT T=0

T +
d2S
dT 2

T=0
T 2 +

1
2

d3S
dT 3

T=0
T3 + ⋅ ⋅ ⋅

S(0)

lim
T→0

dS
dT

= 0

dS
dT T=0

= 0

 P.W.Anderson:”Basic Notions of Condensed Matter Physics”(Frontiers in Physics、5

1984)、松原武生訳『凝縮系物理学の基本概念（物理学叢書51）』（吉岡書店）は絶版
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	 	 (10.4) 

であり、充分低温での比熱(10.2)は 

	 	 (10.5) 

となる。ネルンストの熱定理(10.3)は低温物理で重要な熱力学第三法則です。ネルンスト

の熱定理(10.3)によれば、充分低温では温度 に比例する比熱は存在しない。 

　(10.4)の について0次の項 の値は熱力学では決まらない。熱力学ではエントロピー

やエネルギーのような示量性状態量の変化が重要なので示量性状態量の絶対値はどうでも

良い。適当な基準状態で示量性状態量の絶対値を約束で決めることが許される。 

　プランクは量子統計力学を使った議論で とした（1911年）。 は、ほと

んど約束事であり、自然法則と呼ぶほどの価値は無い。また、粒子間相互作用が大きい系

のエントロピーを量子統計力学を使ってまともに見積もることは困難なので、 に

どの程度一般性があるかも不明です。にもかかわらず、 を熱力学第三法則と呼んで

いる教科書が少なくない。微視的理論を巨視的理論よりも本質的と誤解しているのでしょ

う。微視的理論で可能なことが、すべて実現されるとは限らない、熱力学の基本法則のよ

うな巨視的法則を満足する現象だけが実現されることに注意して欲しい。 

　絶縁体の固体ではデバイ比熱が有名です。電磁波を量子化することでプランクの放射式

を得たプランクに倣って、デバイ（Peter J.W. Debye, 1884-1966年）は格子振動を量子

化することでデバイ比熱を得た(1912年）。デバイ比熱は、充分低温で に比例するの

で、(10.5)の右辺第二項に対応する。 

　金属電子論ではフェルミ温度に比べて充分低温で温度 に比例する自由電子気体の比熱

が有名です。電子は、パウリ（Wolfgang Ernst Pauli、1900-58年）の排他律（1925年）

に従うので、フェルミ粒子す。自由電子気体は、量子統計力学的にはフェルミーディラッ

ク統計に従う気体であリ、その比熱はフェルミ温度に比べて充分低い温度で温度 に比例

する。 

　しかし、ネルンストの熱定理に基づく(10.5)によれば0K近くまで に比例する自由電子

ガスの比熱 はあり得ない。実際、充分低温では超伝導状態に転移するか、あるい

は、自由電子気体というイメージが破綻する。微視的議論だけでは危うい。 
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dT 3
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10.2.　揺らぎと安定性 
　巨視的現象を微視的に議論する統計力学では揺らぎが重要です。統計力学は、確率論で

あり、存在確率の最も高い状態を中心とする揺らぎが基本概念だからです。この思想が、

熱力学に大きな影響を与えた。平衡状態とは存在確率の最も高い状態であり、揺らぎとは

平衡状態からの僅かなズレです。「9.5　孤立系の平衡状態の揺らぎ：揺らぎと安定性」

がその一例です。 

　熱力学の経験則「熱力学的平衡状態にある系が外部から受けたわずかな摂動に対する応

答は、自発的な揺らぎに対する応答と同じである」を公理の一つとする。そうすると、線

形応答理論により揺動散逸定理（fluctuation-dissipation theorem）が導き出せる。この

ことが定理（theorem）との呼称の所以です。平衡状態での揺らぎ（fluctuation）と散逸

（dissipation）との関係を議論する揺動散逸定理の結果ではアインシュタイン（Albert 

Einstein、1879-1955年）のブラウン運動（1905年）、ジョンソン（John Bertrand 

Johnson、1887-1970年）とナイキスト（Harry Theodor Nyqvist, 1889-1976年）によ

る熱雑音（1926年）などが有名です。揺動散逸定理は熱力学的平衡状態の実験結果と一

致する。 

　統計力学の対象は1020個程度の多数の粒子を対象とするので統計的揺らぎが内在する。

平衡状態や局所的平衡状態の成り立つ非平衡定常状態では、統計的揺らぎの大きさは、エ

ントロピーの揺らぎで表現するとボルツマン定数 程度であり、エネルギーの揺らぎで表

現すると 程度です。 

　ペラン（Jean Baptiste Perrin, 1870-1942年）によるブラウン運動の実験（1908年）

により気体分子の実在性が明かにされると、アヴォガドロの仮説（1811年）はアヴォガ

ドロの法則になった。仮説が法則に昇格するのに1世紀かかったことになる。 

　その後アヴォガドロ数の精密測定が行われ、1969年にアヴォガドロ数はアヴォガドロ

定数に名称変更された。1971年に、国際単位系でmolを基本単位とすることに伴い、ア

ヴォガドロ定数は単位mol-1 を含むことになった。2019年にはアヴォガドロ定数が国際単

位系の基本単位として定義されている： 

	  mol-1 

この結果1molの炭素12の質量は12gではなくなり、11.9999999958(36)  gという実験値

となった。 

kB

kBT

NA ≡ 6.02214076 × 1023
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10.3. 相反関係とエントロピー生成最小の法則：Lars Onsager 
　局所平衡の仮定が成り立っている安定な非平衡定常状態では、温度勾配や圧力勾配のよ

うな熱力学的力とエントロピー流や物質流のような移動量との間には様々な相反関係

（reciprocal relations）が、経験則として、知られている。既に「6.4 熱電気現象の相反

関係」で述べたように、トムソンは、熱電気現象の相反関係を根拠として、熱電気現象の

トムソンの第二関係式を提唱した（1856年）。 

　19世紀末には、最大仕事、最小発熱、エネルギー散逸最小などの言葉で、エントロピー

生成最小の法則が認識されていた。例えば、レーリー卿（John William Strutt、3rd 

Baron Rayleigh、1842-1919年）は1873年論文で「エネルギー散逸最小の原理」を示唆

したとされる。レーリーの名著『The Theory of Sound』(2nd ed. 1894)の第１巻p.102

でもエネルギー散逸を議論している。 

　エントロピー生成最小の法則は非平衡定常状態の安定性にも関わる法則です。熱力学第

二法則により、非平衡定常状態のエントロピー生成密度は正です。非平衡定常状態では定

常状態を維持する束縛条件がある。束縛条件を満足する複数の定常状態が存在する場合に

は揺らぎに対して安定な定常状態はエントロピー生成密度が極小の定常状態です。 

　安定な非平衡定常状態を維持している束縛条件が無くなると、非平衡定常状態は平衡状

態へ向かって変化する。この変化過程でも、熱力学第二法則により、エントロピー生成密

度は正です。平衡状態はエントロピー生成密度がゼロの定常状態です。平衡状態が安定な

のはエントロピー生成密度が最小値ゼロの状態だからです。この意味で、エントロピー生

成最小の法則は、平衡非平衡に関わらず、定常状態の安定性に関わる法則です。 

　20世紀のオンサーガー（Lars Onsager、1903-1976年）は非平衡定常状態を研究し、

相反関係とエントロピー生成最小の法則とについて重要な２本の論文を発表した（1931

年）。1931年2月論文 と1931年12月論文 です。それぞれ2月論文と12月論文と略記す6 7

る。 

　10.3.1.　Onsagerの2月論文 

　相反関係とは複数のエネルギー散逸過程（エントロピー生成過程）が共存している場合

の輸送係数や拡散係数の間の関係であると認識したオンサーガーは有名な2月論文で「非

 L.Onsager: Reciprocal Relations in Irreversible Processes. I, Phys.Rev. 37 pp.405-426 (1931)6

 L.Onsager: Reciprocal Relations in Irreversible Processes. II, Phys.Rev. 38 pp.2265-2279 (1931)7
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平衡定常状態が線形の場合には相反関係が成り立つ」ことを証明したとされる。ここで、

非平衡定常状態が線形であるとは、局所平衡の仮定のもとに、揺らぎが小さいことを意味

する。 

　この証明に使ったのは力学の詳細釣合い（detailed balance）の原理です。平衡状態は

時刻に依らないので時間反転に対して不変です。平衡状態を微視的過程で記述するなら、

可能な微視的過程の生じる確率はその逆過程の生じる確率に等しい。これは力学の詳細釣

合いの原理と同じで、時間反転に対する対称性の表れです。このために、オンサーガーの

2月論文の論法では詳細釣合いの原理が成立しない場合の相反関係については対象外で

す。 

　2月論文では、時間反転の対称性に基づいて相反関係を証明した後に、エントロピー生

成最小の法則を使って、非平衡定常状態の安定性を議論した。 

　10.3.2.　Onsagerの12月論文 

　オンサーガーの12月論文では、詳細釣合いの原理が成立しない場合に拡張して、非平衡

定常状態を議論した。 

　揺らぎにより生じた非平衡状態が平衡状態に移行するには有限の経過時間を要するよう

に、揺らぎにより生じた非定常状態から定常状態に移行するにも有限の経過時間が必要で

す。このことを考慮して、12月論文では、時間平均の数式表現として自己相関関数

（autocorrelation function）を使った。自己相関関数は、詳細釣合いの原理が成り立た

ない場合でも、時間反転に対して対称です。時間平均の数式表現として自己相関関数に着

目して、エントロピーの確率論的解釈とされるボルツマンの関係式と熱力学第二法則に基

づく非平衡定常状態の揺らぎに関わるアインシュタインの散逸揺動定理を俯瞰した。12月

論文では、エントロピー生成最小の法則を使って非平衡定常状態の安定性を議論した後

で、相反関係を議論した。このために、安定な定常状態では、詳細釣合いの原理とは無関

係に、相反関係が成り立つ。 

　この12月論文は、確率論での（時間）平均を自己相関関数で置き換えることにより、熱

力学的描像が基本的であることを示した画期的な論文です。12月論文は、2月論文より

も、明らかに優れた論文です。基本法則はエントロピー生成最小の法則です。 

　オンサーガーが再発見したエントロピー生成最小の法則を「エントロピー生成極小の定

理」と命名した（1947年）のはプリゴジン（Ilya Prigogine、1917-2003年）です。プリ
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ゴジンによるこの命名には問題がある。数学の定理は公理から演繹されるが、物理には公

理が存在しない。公理の代わりに基本法則が存在する。多くの経験則の中から基本的と認

められた自然法則が基本法則です。このために、基本法則は時代の変遷とともに変化す

る。例えば、ニュートン力学の質量保存則はアインシュタインの特殊相対論（1905年）で

はエネルギー保存則に取り込まれた。プリゴジンの議論は理性的というよりは情緒的で、

異なる階層の議論を同一視したり、先人の物理概念を闇雲に批判したり、かなり独善的で

す。また、巨視的理論よりも微視的理論を本質的とみなしたり、物理的というより数学的

です。相反関係についてはオンサーガー以前の議論では相反関係と呼び、オンサーガー以

降の議論では相反定理と呼び変えている。定理に対応する公理系が不明確なままで定理と

呼ぶことは容認しがたい。 

　こういうわけで、自然現象を対象とする物理学に相応しいのはエントロピー生成極小の

定理よりエントロピー生成最小の法則です。エントロピー生成最小の法則も熱力学の重要

な基本法則の一つです。 

　一つの平衡状態だけを議論の対象とするなら熱力学第一法則だけで充分でしょう。しか

し、熱力学第一法則は必要条件の一つです。熱力学第一法則を満足する全ての変化が存在

するのでない。ある平衡状態から別の平衡状態への変化を議論するなら熱力学第二法則が

必要です。 

　局所平衡の仮定の下に非平衡定常状態を議論するには、熱力学第一法則と熱力学第二法

則とが必要です。しかし、非平衡定常状態が全て安定とは限らない。熱力学第一法則と第

二法則とを共に満足する非平衡定常状態が安定であるためには、エントロピー生成最小の

法則をも満足する必要がある。 

　オンサーガーは非平衡定常状態の研究により1968年度ノーベル化学賞を受賞し、プリ

ゴジンは散逸構造の理論で1977年度ノーベル化学賞を受賞した。 
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11.　拡張キルヒホッフ理論：クラマース 
　熱音響現象の一つであるタコニス振動の安定限界を議論することを目指したクラマース

（Hendrik Anthony Kramers、1894-1952年）は のキルヒホッフ理論（1868

年）を の場合に拡張した（1949年）。これを拡張キルヒホッフ理論と呼ぶことに

する。 

　拡張キルヒホッフ理論は、キルヒホッフ理論と同様に、流体要素の振動運動に着目する

線形理論です。管の内半径 は管内音波の波長に比べて充分細い（長波長近似）とする。

このために、振動圧力 と振動温度 とは流路断面内で一様です。流体要素の振動運動に伴

う変位 と流速 だけでなく、振動密度 、振動エントロピー も流路断面内分布は軸対称で

す。このこともキルヒホッフ理論と同じです。 

　流体要素の振動運動に着目し、各流体要素は振動中心の位置により識別する。流体要素

の時間平均速度 はゼロとし、時間平均圧力 は管内で一様（ ）とする。流路断

面内平均を と表記する。これらもキルヒホッフ理論と同じです。 

　このように、管の幾何学的形状や座標軸については、拡張キルヒホッフ理論はキルヒ

ホッフ理論と同じです。 

　キルヒホッフ理論とは異なり、拡張キルヒホッフ理論では に任意性がある。拡張キ

ルヒホッフ理論では、 となるように 軸の正方向を選ぶ。このために はあ

り得ない。なお、流体力学では決まらない の値は、流体力学の外から与える必要

がある。 

　線形近似のために 

	  

です。このこともキルフホッフ理論と同じです。しかし、この音速 は局所的音速です。

音速は時間平均温度 に依存するからです。 

　拡張キルヒホッフ理論（ ）が線形近似であるためには、変位振幅 程度の区

間での温度変動 は に比べて小さいこと： 

	  

も必要です。 

∇Tm = 0

∇Tm ≠ 0

r0

p T

ξ u ρ S

um pm ∇pm = 0

⟨ ⋅ ⋅ ⋅ ⟩r
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∇Tm ≥ 0 z ∇Tm < 0

∇Tm ≥ 0
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∇Tm ≥ 0 ⟨ ̂ξ⟩r

⟨ ̂ξ⟩r ∇Tm Tm
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11.1.　拡張キルヒホッフ理論の対流項 
　拡張キルヒホッフ理論とキルヒホッフ理論との相違は振動温度 と振動密度 と振動エン

トロピー のラグランジュ微分の対流項にある。これらの対流項は、キルヒホッフ理論で

はゼロですが、拡張キルヒホッフ理論では のために有限です。 

　流体要素は温度勾配 に沿って流速 で移動する際に環境変化に順応しようとす

る。振動運動する流体要素の環境変化への対応の線形近似が です。 

　振動温度 に関わるラグランジュ微分 

	 	 (8.8) 

のために、拡張キルヒホッフ理論（ ）では対流項 が有限です。 

　対流項 の時間項 に対する比 

	  

の大きさは、温度振幅 を使うと 

	  

程度です。これは が同じなら角周波数 に反比例する。つまり、拡張キルヒホッフ理論と

キルヒホッフ理論との相違は が低ければ低いほど顕著になる。 

　拡張キルヒホッフ理論では、変位振幅 が大きいと が局所的温度振幅 を越える、

すなわち、対流項が時間項よりも大きくなることも可能です。 が同じでも、 が大きいほ

どラグランジュ微分に及ばす対流項の寄与が大きくなる。 

　振動密度 のラグランジュ微分の線形近似 

	  

では対流項 が重要です。流体要素は密度勾配 に沿って移動する際に環境密度に順

応しようとする。時間平均密度 は環境密度の代表です。 も変位に伴う環境変化の指

標です。 

　圧力 と温度 の関数としての密度 に着目すると 

	  

なので、 

	  

です。拡張キルヒホッフ理論（ かつ ）では 

	  

T ρ

S

∇Tm > 0

∇Tm > 0 u

u∇Tm

T
DT
Dt

≡
∂T
∂t

+ u∇Tm

∇Tm > 0 u∇Tm

u∇Tm = iωξ ∇Tm ∂T /∂t = iωT
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+ u∇ρm

u∇ρm ∇ρm

ρm ∇ρm

p T ρ(p, T )

dρ = ( ∂ρ
∂p )

T
dp + ( ∂ρ

∂T )
p

dT = ρmKT dp − ρm βdT

∇ρm = ρmKT ∇pm − ρm β ∇Tm

∇pm = 0 ∇Tm > 0

∇ρm = − ρm β ∇Tm
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となり、対流項 は 

	  

です。拡張キルヒホッフ理論（ かつ ）では熱膨張率 が重要です。 

　振動エントロピー のラグランジュ微分 

	 	  

では対流項 が重要です。流体要素はエントロピー勾配 に沿って移動する際に環境

エントロピーに順応しようとする。時間平均エントロピー は環境エントロピーの代表で

す。 も変位に伴う環境変化の指標です。 

　圧力 と温度 の関数としてのエントロピー に着目すると 

	  

なので 

	 	 (8.11) 

かつ 

	  

です。従って、拡張キルヒホッフ理論（ かつ ）では 

	  

です。拡張キルヒホッフ理論でも、 が零なら となり、キルヒホッフ理論と同じ

です。こういうわけで、拡張キルヒホッフ理論（ かつ ）では 

	 	 (11.1) 

です。同じことですが、拡張キルヒホッフ理論では も重要です。 

11.2.　拡張キルヒホッフ理論の基本方程式 
　振動圧力 と振動流速 と振動温度 との３変数に対応して、基本方程式は運動方程式

（運動量保存則）と連続の式（質量保存則）と熱輸送の一般式の３式です。このこともキ

ルフホッフ理論と同じです。 

　管内音波は、自由空間中の音波と違って、管壁の影響を受ける。管壁に接している

（ ）流体要素は粘性のために静止しているからです。また管壁の温度は振動しない

とする。管壁に接している（ ）の流体要素の温度振動もゼロです。このこともキル

フホッフ理論と同じです。 

u∇ρm

u∇ρm = − ρm βu∇Tm

∇pm = 0 ∇Tm > 0 β

S
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p u T

r = r0
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　流体要素の運動方程式（運動量保存則）はナヴィエ・ストークスの式です。ナヴィエ・

ストークスの式の線形近似は 

	 	 (8.11) 

です。ここで は動粘性係数です。(8.11)は に依らない。 

　連続の式（質量保存則）は 

	 	 (8.12) 

です。拡張キルヒホッフ理論の仮定（ ）により、 

	  

です。 

　拡張キルヒホッフ理論は、キルヒホッフ理論とは異なり、管内音波の分散を解析的に議

論することは出来ない。なぜなら、質量保存則(8.12)が、 の対流項を通して、

に依存するからです。 

　最後に、熱輸送の一般式は 

	 	 (8.13) 

あるいは 

	 	 (8.14) 

です。(8.14)は振動圧力 と振動温度 と振動流速 との関係です。(8.13)と(8.14)は、それ

ぞれ、 と の対流項を通して に依存するので、熱輸送の一般式（エネル

ギー保存則）もキルヒホッフ理論とは異なる。 

　拡張キルヒホッフ理論の基本方程式は、振動圧力 と振動流速 と振動温度 の3変数に関

わるナヴィエ・ストークスの式と連続の式（質量保存則）と熱輸送の一般式（エネルギー

保存則）の3式の線形近似です。ナヴィエ・ストークスの式の線形近似は 

	 	 (8.11) 

です。連続の式（質量保存則）の線形近似は 

	 	 (8.12) 

です。熱輸送の一般式（エネルギー保存則）の線形近似は 

	 	 (8.13) 

あるいは 

	 	 (8.14) 
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です。この3本の線形偏微分方程式からなる連立方程式が拡張キルヒホッフ理論の基本方

程式です。 

　質量保存則の線形近似(8.12)と熱輸送の一般式の線形近似(8.13)あるいは(8.14)では、ラ

グランジュ微分の対流項を通して、 が重要です。 

11.3.　振動流速の流路断面内分布 
　ナヴィエ・ストークスの式の線形近似(8.11)を変形すると 

	  

すなわち 

	 	 (8.15) 

です。 

　(8.15)は流速 の について２階の偏微分方程式です。２階の偏微分方程式に対応して

境界条件が二つある。一つは粘性ために管壁に接している流体は動けないこと、すなわ

ち、管壁に接触している流体の速度については です。もう一つの境界条件は、速

度 の軸対称性 

	  

です。 

　径方向座標 のみに依存する未知の関数 を使って を 

	 	 (8.16) 

ただし 

	  

とすると、 

	  

です。これが任意の で成り立つためには 

	 	 (8.17) 

が必要で、(8.17)の場合には 

	  

すなわち 

	 	 (8.18) 

です。これはキルヒホッフ理論と同じです。 
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11.4. 振動圧力の軸方向変化 
　(8.18)と とを使うと、 

	 	 (11.2) 

です。これもキルヒホッフ理論の結果 

	 	 (8.23) 

と同じです。(11.2)は振動圧力の軸方向変化 を評価するのに役立つ。 

11.5.　振動温度と振動エントロピー 

　11.5.1.　振動温度の流路断面内分布 

　振動温度 のラグランジュ微分 

	 	 (8.8) 

と熱輸送の一般式の線形近似 

	 	 (8.14) 

とを使って振動温度 の流路断面内分布を議論する。 

　(8.14)は、(8.15)同様に、 の について２階の偏微分方程式です。２階の偏微分方程

式に対応して二つの境界条件がある。第一の境界条件は管壁の熱容量が大きいために管壁

の温度は揺るがない、すなわち、管壁に接触している流体の温度も揺るがない と

する。二番目の境界条件は、温度変動 の軸対称性 

	  

です。 

　クントの実験に対応するキルヒホッフ理論（ ）では、 

	  

となる。これはナヴィエ・ストークスの式の線形近似 

	 	 (8.15) 

と同じ形の偏微分方程式です。二つの境界条件も同じ形です。従って、キルヒホッフ理論

（ ）の場合の解は 

	 	 (8.19) 

ただし 
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	 	 (8.20) 

です。熱緩和時間 

	  

は粘性緩和時間 に対応し、熱境界層の厚さ 

	  

は粘性境界層の厚さ に対応する。 

　気体で熱拡散係数 は温度の増加関数なので、熱緩和時間 は時間平均温度 の減少関

数です。 

　振動温度 の流路断面内分布は、拡張キルヒホッフ理論（ ）では、キルヒホッフ

理論（ ）と異なる。ラグランジュ微分 

	 	 (8.8) 

の対流項 を通して、振動流速 にも依存する。振動流速 

	 	 (8.16) 

が の関数なので複雑です。振動温度 の 依存性は と とを通して表現されるに

相違ない。 

　流路断面内での熱輸送の一般式の線形近似 

	 	 (8.14) 

の左辺に(8.8)を使うと 

	 	 (11.3) 

となる。これは線型の偏微分方程式なので、 に依らない二つの未知数 と とを使っ

て、 と の線形結合 

	  

と仮定してみよう。 

　ベッセル関数の性質 

	  

を使うと、 

	  

	  

なので、(11.3)は 
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すなわち 

	 	 (11.4) 

です。ここでは 

	 	 (8.16) 

とプラントル数 

	  

とを使った。 

　(11.4)が に依存しないためには、(11.4)のうちで に依存する に比例する 

	  

が0であること、すなわち、 

	 	 (11.5) 

が必要です。(11.5)の場合には(11.4)は 

	  

となるので、再度(11.5)を考慮すると 

	 	 (11.6) 

です。 

　(11.4)が任意の で成り立つための必要充分条件は(11.5)と(11.6)との二つです。この

二つの必要十分条件を(11.4)に使うと 

	  

すなわち 

	  

となる。この両辺に を加えると、 

	  

	 	 (11.7) 

となる。 

　(11.7)の左辺には、ラグランジュ微分 
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	 	 (11.1) 

を使い、右辺の には 

	 	 (8.16) 

を使うと、(11.7)は 

	 	 (11.8) 

となる。ここで 
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図11.1　 の 依存性：プラントル数の値が2/3の場合で
す。比較のために も載せた。 は の複素共役なので、

です。 ですが、 です。
の位相角 は負で、 が大きい所では に漸近す

る。 で です。

⟨h⟩r ωτα

χα h† h
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	 	 (11.9) 

は数式表現を短くするために導入した無次元量です。 

　キルヒホッフ理論（ ）の場合の解(8.19)が(11.8)から得られることは明かです。 

　(11.8)の流路断面内平均は 

	 	 (11.10) 

ただし 

	 	 (11.11) 

です。(11.10)の右辺第二項は振動温度 のラグランジュ微分(11.1)の対流項 の顕れで

す。 

　 の場合の の 依存性を図11.1に示した。 は大雑把には と似ている。

( 1 1 . 1 1 )によれば、非粘性（ ）では です。 ですが、

です。 

　11.5.2.　振動流速の軸方向変化 

　質量保存則の線形近似 

	 	 (8.9) 

によれば 

	  

です。ここで(11.10)と平衡状態の熱力学の恒等式 

	 	 (8.24) 

とを思い出すと 

	  

すなわち 

	 	 (11.12) 

です。この右辺第二項は振動密度 のラグランジュ微分の対流項 の顕われです。

の場合にはキルヒホッフ理論の結果 

	 	 (8.25) 

と一致する。(8.25)では、 と恒等式 とを使った。 

また、気体では なので、(11.12)は の１次式です。(11.12)は後に「第12章　熱

音響理論」で仕事流密度の湧き出し を議論する際に使う。 

h ≡
fα − fν

(1 − Pr) (1 − χν)

∇Tm = 0

D⟨T ⟩r

Dt
= (1 − χα)

βTm

ρmCp

Dp
Dt

+ ⟨h⟩r⟨u⟩r ∇Tm

⟨h⟩r =
χα − χν

(1 − Pr)(1 − χν)
T u∇Tm

Pr = 2/3 ⟨h⟩r ωτα ⟨h⟩r χα

ν = 0 ⟨h⟩r = χα ℜ⟨h⟩r < ℜ⟨ χα⟩r

ℑ⟨h†⟩r > ℑ⟨ χ†
α⟩r

KT
Dp
Dt

− β
DT
Dt

+ ∇u = 0

∇⟨u⟩r = − KT
Dp
Dt

+ β
D⟨T ⟩r

Dt

( ∂T
∂p )

S
= ( ∂V

∂S )
p

=
βTm

ρmCp
=

KT − KS

β

∇⟨u⟩r = − KT
Dp
Dt

+ (1 − χα)(KT − KS)
Dp
Dt

+ ⟨h⟩r⟨u⟩r β ∇Tm

∇⟨u⟩r = − iω [1 + (γ − 1)χα] KS p + ⟨h⟩r β⟨u⟩r ∇Tm

ρ u∇ρm

∇Tm = 0

∇⟨u⟩r = − [1 + (γ − 1)χα] KS
∂p
∂t

∇pm = 0 KT = γKS

βTm ≃ 1 ∇Tm

∇ Ĩ
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　11.5.3.　振動エントロピーのラグランジュ微分 

　振動エントロピー のラグランジュ微分を調べる。 

　 に着目すると 

	  

なので 

	  

です。この右辺の に(11.8)を代入すると 

	 	 (11.13) 

です。この右辺第二項は振動エントロピー のラグランジュ微分の対流項 の顕れで

す。(11.13)は の１次式です。 

　「第12章　熱音響理論」でエントロピー流密度を議論する際に(11.13)を使う。 

11.6.　軸方向変化：位相差、圧力振幅、流速振幅 
　クラマースはタコニス振動を理解するためにキルヒホッフ理論を拡張したが、クラマー

スの結論（1949年）はこの拡張キルヒホッフ理論に否定できだった。タコニス振動の実

験と合わないからです。しかし、その原因は、ベッセル関数の値の評価に問題があったか

らです。クラマースの頃には科学計算用のプログラム言語FORTRANが無かったので、ク

ラマースはベッセル関数の評価に高周波近似（ ）を使わざるを得なかったので

す。 

　FORTRANが使えるようになったのは1960年代のことです。例えば、日本で全国共同利

用施設として東京大学に大型計算器センターが設置されたのは1965年4月のことです。デ

ジタル計算機とFORTRANが使用可能になっても、充実したライブラリーを使って全周波

数領域でベッセル関数の正確な値が得られるようになるまでには更に年月が必要だった。 

　タコニス振動の安定限界を議論する際に、クラマースもロット（Nikolaus Rott）も拡

張キルヒホッフ理論を使っていない。二人とも の領域での議論を避けた。クラ

マースもロットも時間平均温度 の軸方向分布を階段関数で近似し、時間平均温度 の低

温部と時間平均 の高温部とした。同じことですが の軸方向分布をデルタ関数に置き

換えた。 

S

S(p, T )

dS = ( ∂S
∂p )

T
dp + ( ∂S

∂T )
p

dT = −
β
ρm

dp +
Cp

Tm
dT

DS
Dt

= −
β
ρm

Dp
Dt

+
Cp

Tm

DT
Dt

DT /Dt
DS
Dt

= − fα
β
ρm

Dp
Dt

+ hCp⟨u⟩r
∇Tm

Tm
S u∇Sm

∇Tm /Tm

ωτα ≫ 10

∇Tm ≠ 0

Tm TC

TH ∇Tm
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　クラマースやロットの安定限界はタコニス振動が生じる可能性のある温度比 で

す。安定限界を議論する際に、高温部と低温部のそれぞれにキルヒホッフ理論を使って議

論し、両者の振動解（ と ）を使って、振動する質量流量 

	 流路断面積  

と振動圧力 とが連続となるような温度比 を求めた。 

　ロットが評価した安定限界（1973年）を矢崎らは実験 で支持した（1979年）。矢崎ら8

の実験は、 の領域が管内音波の発生源あるいは音源であることも示唆した。 

　音の発生と伝播とを独立な現象として扱ってきた伝統的音響学では、音の伝播について

はかなり理解が進んでいるが、音の発生についてはあまり進展が見られない。音の発生の

理解のためにも拡張キルヒホッフ理論（ ）を詳しく検討する必要が出てきた。 

　拡張キルヒホッフ理論（ ）では、管内音波の分散を解析的に議論することが出

来ないだけでなく、 と振動モード（位相差 と音響インピーダンス ）と

の軸方向分布の解析解を得ることも難しい。 

　 をパラメーターとして拡張キルヒホッフ理論（ ）の数値解を得ること

が可能になったのは、小型デジタル計算機PCが進歩した1990年頃からのことです。 

　拡張キルヒホッフ理論に基づく数値シミュレーションを行う際には 

	 	 (11.2) 

が役立つ。複素表示 

	 	 (8.1) 

	 	 (8.3) 

を使うと、(11.2)は 

	 	 (11.14) 

となる。 

TH /TC

p ρmu

× ρmu

p TH /TC

∇Tm ≠ 0

∇Tm ≥ 0

∇Tm ≥ 0

∇Tm ≥ 0 θ Z ≡ ̂p /⟨ ̂u⟩r

̂p⟨ ̂u⟩r > 0

∇Tm ≥ 0 ∇Tm ≥ 0

∇p =
1

1 − χν
ω2ρm⟨ξ⟩r

⟨ξ⟩r = ⟨ ̂ξ⟩rexp iωt

p = ̂p exp i(ωt + θ )

∇( ̂p exp iθ ) =
1

1 − χν
ω2ρm⟨ ̂ξ⟩r

 T. Yazaki, A. Tominaga and Y. Narahara: Stability Limit for Thermally Driven Acoustic 8

Oscillations, Cryogenics 19 July, 393-396 (1979)、詳細はT. Yazaki, A. Tominaga and Y. Narahara: 

Experiments on Thermally Driven Acoustic Oscillations of Gaseous Helium,J. Low Temp. Phys. 41 

(1/2), 45-60 (1980)
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に注意すると、(11.14)の実数部と虚数部とは、それぞれ、 

	 	 (11.15) 

と 

	  

となる。両者から を消去すると 

	 	 (11.16) 

となり、 を消去すると 

	 	 (11.17) 

となる。ここでは、音響インピーダンス 

	  

を使った。さらに、自由空間中の音波の音響インピーダンス 

	 	 (8.5) 

を使うと、 

∇( ̂p exp iθ ) = [cos θ ∇ ̂p − ̂p sin θ ∇θ] + i [sin θ ∇ ̂p + ̂p cos θ ∇θ]

cos θ ∇ ̂p − ̂p sin θ ∇θ = ℜ
1

1 − χν
ω2ρm⟨ ̂ξ⟩r

sin θ ∇ ̂p + ̂p cos θ ∇θ = − ℑ
1

1 − χ†
ν

ω2ρm⟨ ̂ξ⟩r

∇ ̂p

∇θ = − [ℜ
1

1 − χν
sin θ + ℑ

1
1 − χ†

ν
cos θ] ωρm

Z

∇θ

∇ ̂p
̂p

= [ℜ
1

1 − χν
cos θ − ℑ

1
1 − χ†

ν
sin θ] ωρm

Z

Z ≡
̂p

⟨ ̂u⟩r
=

̂p
ω⟨ ̂ξ⟩r

Z0 ≡
ρm

KS
= ρmaS
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と仮定してみよう。 

　ベッセル関数の性質 

  

を使うと、 

  

  

なので、(11.3)は 

  

すなわち 

  (11.4) 

です。ここでは 

  (8.16) 

とプラントル数 

1
r

∂
∂r (r

∂fρ
∂r ) = iβ fρ

ρ

∂T
∂t

= (1 ∇ fρ) ∂A
∂t

+ (1 ∇ fθ) ∂N
∂t

1
r

∂
∂r (r

∂T
∂r ) = ∇ iβ fρ

ρ
A ∇ iβ fθ

θ
N = ∇ fρ

ρ
∂A
∂t

∇ fθ
θ

∂N
∂t

∂A
∂t

+ (1 ∇ fθ) ∂N
∂t

+ u≥Tm + fθ
Pr

∂N
∂t

= κTm

αmCp

Dp
Dt

∂A
∂t

+ (1 ∇ fθ) ∂N
∂t

+ 1 ∇ fθ
1 ∇ ηθ

≡u−r ≥Tm + fθ
Pr

∂N
∂t

= κTm

αmCp

Dp
Dt

u = 1 ∇ fθ(r)
1 ∇ ηθ

≡u−r
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図11.2　 の 依存性：両対数表示です。 の実数部は
では4/3に近く、 では１に近い。 の虚数部は の

減少関数です。 では に反比例し、 では に反比例して
いる。

1/(1 ∇ η†
θ ) βζθ 1/(1 ∇ η†

θ )
βζθ < 1 βζθ > 10 1/(1 ∇ η†

θ ) βζθ

βζθ < 1 βζθ βζθ > 10 βζθ

βζθ



	  

です。 

	 　図11.2に の 依存性を示した。 の虚数部は正で の減少関数で

す。このために は負です。 では に反比例し、 では に反比例して

いる。 の実数部は１に近い。 

	  

　 と とは、 と とに依存するが、 とは関わりない。また、 と とは音

響インピーダンス に反比例している。このために、 が大きい節の近くでは、 と

とはゼロに近い。 

　次に 

	 	 (11.12) 

に 

	 	 (8.2) 

と 

	 	 (8.3) 

とを使うと、 

	  

すなわち 

	  

となる。 

　この左辺は実数なので右辺の実数部 

	  

に等しい。従って 

	 	  

	 	 (11.18) 

です。なお、定在波（ ）では、(11.18)は、 

	  

となる。いずれにしても温度勾配 の効果が顕著になるには が小さいことが望ま

しい。 

ωρm

Z
=

ω
aS

Z0

Z

1/(1 − χ†
ν ) ωτν 1/(1 − χ†

ν ) ωτν

∇θ ωτν < 1 ωτν ωτν > 10 ωτν

1/(1 − χ†
ν )

∇θ ∇ ̂p / ̂p ωτν θ ωτα ∇θ ∇ ̂p / ̂p

Z Z ∇θ ∇ ̂p / ̂p

∇⟨u⟩r = − iω [1 + (γ − 1)χα] KS p + ⟨h⟩r β⟨u⟩r ∇Tm

⟨u⟩r =
∂
∂t

⟨ξ⟩r = iω⟨ξ⟩r = ⟨ ̂u⟩rexp i (ωt +
π
2 ) = i⟨ ̂u⟩rexp iωt

p = ̂p exp i (ωt + θ )

∇⟨ ̂u⟩r = − ω [1 + (γ − 1)χα] KS ̂p exp iθ + ⟨h⟩r β⟨ ̂u⟩r ∇Tm

∇⟨ ̂u⟩r

⟨ ̂u⟩r
= − [1 + (γ − 1)χα] ωKSZ exp iθ + ⟨h⟩r β ∇Tm

−[cos θ − sin θ + (γ − 1)(ℜχα cos θ + ℑχ†
α sin θ)] ωKSZ + ℜ⟨h⟩r β ∇Tm

∇⟨ ̂u⟩r

⟨ ̂u⟩r
= − [cos θ − sin θ + (γ − 1)(ℜχα cos θ + ℑχ†

α sin θ)] ωKSZ + ℜ⟨h⟩r β ∇Tm

θ = 0
∇⟨ ̂u⟩r

⟨ ̂u⟩r
= − [1 + (γ − 1)ℜχα] ωKSZ + ℜ⟨h⟩r βTm

∇Tm

Tm
∇Tm ωKSZ
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	 	 (8.6) 

と	  

	 	 (8.5) 

とから 

	  

なので、 

	  

です。このことから明らかなように、熱音響機器の運転では音速の大きい気体を使った低

周波での運転が望ましい。 

ρmKSa2
S = 1

Z0 ≡
ρm

KS
= ρmaS

Z0KSaS = 1

ωKSZ =
ω
aS

Z
Z0
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12.　熱音響理論 
　カルノー著『火の動力』以前に、スターリング（Robert Stirling、1790-1878年）が発

明したスターリングエンジン（1816年）は熱音響現象の仲間です。ソンドハウス管

（1850年）やレイケ管（1859年）などの熱音響自励振動現象はレイリー卿著”The 

Theory of Sound”（初版1877年、改訂版1894~96年）にも紹介されている。20世紀のタ

コニス振動も熱音響自励振動現象です。 

　熱音響現象は管内流体の縦波に伴う熱力学現象です。熱音響機器には温度勾配が有限

（ ）の部品が存在し、この部品は蓄熱器（regenerator）と総称されている。 

　熱音響機器では蓄熱器の両端に吸熱器と放熱器とが必要不可欠です。外燃機関であるス

ターリングエンジンの地位は、19世紀後半に内燃機関に奪われた。内燃機関では吸熱器も

放熱器も不要だからです。しかし、内燃機関では冷凍機は作れない。熱音響現象に基づく

冷凍機は現在でも健在です。スターリング冷凍機、GM冷凍機、パルス管冷凍機などの蓄

熱器を使う冷凍機も熱音響現象の仲間です。、 

　管内流体の振動運動の記述には、一様温度（ ）の領域では「8.管内音波の流体

力学：クントとキルヒホッフ」で紹介したキルヒホッフ理論（1868年）が役立つ。蓄熱

器（ ）では拡張キルヒホッフ理論が役立つ。 

　キルヒホッフ理論も拡張キルヒホッフ理論も、流体の振動運動を議論する際に管の内径

が波長に比べて短かく（長波長近似）、管の長さが管内流体の変位振幅 に比べて長い

場合の線形理論です。長波長近似のために、時間平均温度 と時間平均密度 と振動圧力

とは流路断面内で一様です。 

　角周波数 で振動運動する変位の流路断面平均は 

	 	 (8.1) 

で、振動流速 の流路断面平均 は 

	 	 (8.2) 

で、振動圧力は 

	 	 (8.3) 

です。 

　音響インピーダンス 

	 	 (8.4) 

∇Tm ≠ 0

∇Tm = 0

∇Tm ≠ 0

⟨ ̂ξ⟩r

Tm ρm

p

ω

⟨ξ⟩r = ⟨ ̂ξ⟩rexp iωt

u ⟨u⟩r

⟨u⟩r =
∂
∂t

⟨ξ⟩r = iω⟨ξ⟩r = ⟨ ̂u⟩rexp i (ωt +
π
2 )

p = ̂p exp i (ωt + θ )

Z ≡
̂p

⟨ ̂u⟩r
≥ 0
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は角周波数 に依らない。複素音響インピーダンス 

	 	 (8.7) 

は振動モード（位相差 と音響インピーダンス ）で決まる：複素音響インピーダンスの大

きさが音響インピーダンス であり、複素音響インピーダンスの位相角は です。 

　角周波数 の振動運動の様子は振動モード（あるいは複素音響インピーダンス）と

で表現できる。音響変数（ 、 、 ）は振動モード（ 、 ）と の総称です。振動

モードも も振動中心の 座標に依存する。 

　現実の蓄熱器の構造は様々ですが、ここでは、同じ太さの複数の直管を束ねて並列接続

した形状の蓮根モデルを想定する。つまり蓄熱器全体は多数の直管の並列接続とする。 

　一つの直管の中の流体の振動運動に拡張キルヒホッフ理論を適用する。すなわち、蓄熱

器（ ）を流体力学的に記述理解するには「11.拡張キルヒホッフ理論：クラマー

ス」で述べた拡張キルヒホッフ理論を使う。拡張キルヒホッフ理論は に制限され

ているキルヒホッフ理論（1868年）を拡張して とした（1949年）もので、

となるように 軸の正方向が選ばれている。 

　拡張キルヒホッフ理論でも、キルヒホッフ理論と同様に、時間平均温度 と時間平均密

度 と振動圧力 とは流路断面内で一様です。 

　流速 の流路断面内分布は、キルヒホッフ理論と同様に、 

	  

で、圧力勾配 との関係は 

	 	 (8.18) 

です。振動温度 については 

	 	 (11.8) 

です。この右辺第二項については、キルヒホッフ理論では だったが、拡張キルヒ

ホッフ理論では です。 

　なお、 の値は、流体力学では決まらない。 の値は流体力学の外から与

える必要がある。 

ω
p

⟨u⟩r
= Z exp i (θ −

π
2 )

θ Z

Z θ − π /2

ω ̂p⟨ ̂u⟩r

θ Z ̂p⟨ ̂u⟩r θ Z ̂p⟨ ̂u⟩r

̂p⟨ ̂u⟩r z

∇Tm ≠ 0

∇Tm = 0

∇Tm > 0

∇Tm > 0 z

Tm

ρm p

u
u

⟨u⟩r
=

1 − fν(r)
1 − χν

∇p
∂⟨u⟩r

∂t
= − (1 − χν) ∇p

ρm
T

DT
Dt

= (1 − fα)
βTm

ρmCp

Dp
Dt

+ h⟨u⟩r ∇Tm

∇Tm = 0

∇Tm ≥ 0

∇Tm > 0 ∇Tm > 0
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12.1.　非平衡定常状態の熱力学概念 
　拡張キルヒホッフ理論に基づく流体力学的議論や数値シミュレーションの結果を理解す

るのに、熱音響理論は非平衡定常状態の熱力学概念を使う。非平衡定常状態の熱力学概念

には 

	 仕事流密度 、エントロピー流密度 、エネルギー流密度  

と、それぞれの湧き出しである 

	 仕事源 、エントロピー生成密度 、エネルギー生成密度  

などがある。これらの非平衡定常状態の熱力学概念は定常です。熱力学第二法則により

であり、定常状態の熱力学第一法則により です。 

　非平衡定常状態の熱力学概念を使うために、熱音響理論では熱音響現象を周期的定常状

態と認識する。時間平均することで得られる周期的定常状態は角周波数 と音響変数

（ 、 、 ）とが時刻に依らない定常状態です。周期的定常状態は、時間変化が議論の

対象外となるので、非平衡定常状態です。 

　さらに、流路断面内で平均することで、流路断面内での空間変化も議論の対象外とな

り、この非平衡定常状態は管軸方向に１次元化される。 

　時間平均と流路断面内平均という二段階の粗視化によって得られた１次元化非平衡定常

状態が熱音響理論で使う非平衡定常状態です。二段階の粗視化の数式表現については

「12.2.　仕事流密度」と「12.4　エントロピー流密度」で述べる。 

12.2.　蓄熱器の熱力学的機能 
　蓄熱器（ ）で生じる熱音響現象は管内流体の振動運動に伴う熱力学現象です。 

　微小カルノー機関（ ）を に拡張した微小蓄熱器を想定する。微小長さ

の微小蓄熱器は微小温度差 

	 　すなわち　  

の蓄熱器です。今後の蓄熱器（ ）のイメージはこの微小蓄熱器の直列接続です。 

　蓄熱器（ ）の管壁は剛体とすることで、径方向の仕事流はゼロで、仕事流密度

は軸方向のみ有限です。 

　さらに、蓄熱器の側壁は外界から熱的に遮断されていると仮定する。この蓄熱器では、

エントロピー流密度 の径方向成分の値は、軸方向成分に比べて無視できるほど小さい。

Ĩ S̃ Ũ

W ≡ ∇ Ĩ σS ≡ ∇ S̃ ∇ Ũ

σS ≥ 0 ∇ Ũ = 0

ω

θ Z ̂p⟨ ̂u⟩r

∇Tm > 0

∇ S̃ = 0 ∇ S̃ > 0

Δz > 0

ΔTm ≡ ∇TmΔz ≪ 1
ΔTm

Tm
=

∇Tm

Tm
Δz ≪ 1

∇Tm > 0

∇Tm > 0 Ĩ

S̃
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このために、蓄熱器の熱流密度 とエネルギー流密度 とは軸方向成分だ

けです。 

　この蓄熱器では定常状態の熱力学第一法則 

	  

すなわち　 

	 	 (5.1) 

が成り立つ。つまり、 と とは、符号が逆だが、大きさが等しい。 

　振動運動には強制振動と自励振動とがあり、両者の相違は の符号にある。

強制振動では仕事流密度が吸い込まれる（ ）ので、 

	  

です。自励振動では仕事流密度が湧き出す（ ）ので、 

	  

です。 

	  

ということはない。 

　熱流密度 に注意すると 

	  

なので、熱流密度の湧き出し はエントロピー生成密度 と温度勾配 とに関わりが

ある。 

　定常状態の微小熱機関の原動機効率を議論するのに 

	 	 (6.8) 

が役立った。微小熱機関では です。 

　熱音響現象は周期的定常状態なので、この温度 を時間平均温度 に置き換えた 

	  

を使う。 なので、 です。 

　微小蓄熱器の原動機効率は 

	  

Q̃ ≡ TmS̃ Ũ ≡ Ĩ + Q̃

∇ Ũ = 0

∇ Q̃ + ∇ Ĩ = 0

∇ Ĩ ∇ Q̃

∇ Q̃ = − ∇ Ĩ

∇ Ĩ < 0

∇ Q̃ = − ∇ Ĩ > 0

∇ Ĩ > 0

∇ Q̃ = − ∇ Ĩ < 0

∇ Q̃ = − ∇ Ĩ = 0

Q̃ ≡ TmS̃

∇ Q̃ = S̃ ∇Tm + Tm ∇ S̃

∇ Q̃ ∇ S̃ ∇Tm

ζ ≡ −
∇ Ĩ

Q̃
=

∇ Q̃

Q̃
=

∇T
T

+
∇ S̃

S̃
ζ > 0

T Tm

ζ ≡ −
∇ Ĩ

Q̃
=

∇ Q̃

Q̃
=

∇Tm

Tm
+

∇ S̃

S̃
∇ Q̃ = − ∇ Ĩ ≠ 0 ζ ≠ 0

ζΔz ≡
∇ Ĩ

− Q̃
Δz =

∇ Q̃

Q̃
Δz
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であり、微小蓄熱器のヒートポンプとしての成績係数（COP）は 

	  

です。いずれも、等号はエネルギー流保存則(5.1)の顕れです。 

　熱音響自励振動（ ）の蓄熱器は熱音響原動機です。微小蓄熱器の原動機

効率は正なので、熱音響自励振動（ ）では、 

	  

です。 

　Kurzwegら は管内の流体が振動運動すると、管軸方向の見かけの熱伝導が異常に大き9

くなること発見した（1984年）。Kurzwegらがこの実験装置をドリームパイプと命名し

たことに因み、この現象もドリームパイプと呼ばれている。 

　熱音響強制振動（ ）には熱音響ヒートポンプ（ ）とドリームパイ

プ（ ）とがある。両者で微小蓄熱器の成績係数の符号が異なる。 

　熱音響ヒートポンプ（ ）として機能している蓄熱器では、微小蓄熱器の成績係数

は正です。同じ事ですが、微小蓄熱器が、微小熱機関として機能している場合には で

す。しかし、ドリームパイプ（ ）として機能している蓄熱器では、 です。 

　微小蓄熱器の と と の符号を表12.1にまとめた。この表から明らかなように、

熱音響原動機だけは です。熱音響ヒートポンプだけは です。熱機関

ではないドリームパイプだけは です。ドリームパイプは熱機関ではない熱音響現象で

す。 

(ζΔz)−1 ≡ ( ∇ Ĩ

− Q̃
Δz)

−1

= ( ∇ Q̃

Q̃
Δz)

−1

∇ Q̃ = − ∇ Ĩ < 0

∇ Q̃ = − ∇ Ĩ < 0

Q̃ < 0

∇ Q̃ = − ∇ Ĩ > 0 Q̃ > 0

Q̃ < 0

Q̃ > 0

ζ > 0

Q̃ < 0 ζ < 0

∇ Ĩ ∇ Q̃ Q̃

∇ Ĩ = − ∇ Q̃ > 0 Q̃ > 0

ζ < 0

 U. Kurzweg and L. D. Zhao: Phys. Fluids 27 (1984) 26249
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機能

熱音響原動機（自励振動） 正 正 負 負

熱音響ヒートポンプ（強制振動） 正 負 正 正

ドリームパイプ（強制振動) 負 負 正 負

∇ Ĩ ∇ Q̃ζ Q̃

表12.1 微小蓄熱器の機能の分類：自励振動では で、
強制振動では です。 は熱音響ヒートポンプだけ
です。 はドリームパイプだけです。

∇ Ĩ = − ∇ Q̃ > 0
∇ Ĩ = − ∇ Q̃ < 0 Q̃ > 0

ζ < 0



　表12.1は図6.1との対応関係は明白です。熱音響ヒートポンプ（ ）は図6.1の第二

象限に対応する。ドリームパイプ（ かつ ）は図6.1の第三象限に対応する。

熱音響原動機（ ）は図6.1の第四象限に対応する。 

　最後に、熱力学第一法則により により は座標 に依らない一定値で

す。さらに経験によれば 

	 	 (6.7) 

です。熱力学的議論に現れる不等式は熱力学第二法則との関わりが期待されるので、(6.7)

も熱力学第二法則と関わりがあるに相違ない。 

　熱音響ヒートポンプ（ ）では、微小蓄熱器の出力熱流密度 は入力仕事流密

度 を越えない： 

	  

です。熱音響ヒートポンプ以外（ ）では、 の符号は定まらない。仕事流密度 の大

は を越えない： 

	  

Q̃ > 0

∇ Ĩ < 0 Q̃ < 0

∇ Ĩ = − ∇ Q̃ > 0

∇ Ũ = 0 Ũ ≡ Ĩ + Q̃ z

Ũ ≡ Ĩ + Q̃ ≤ 0

Q̃ > 0 Q̃ > 0

− Ĩ > 0

0 < Q̃ ≤ − Ĩ

Q̃ < 0 Ĩ Ĩ

Ĩ − Q̃ > 0

Ĩ ≤ − Q̃
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図 1 2 . 1 　 自 励 振 動
（ ）の場
合の仕事流密度 、熱流密
度 、エネルギー流
密度 の分布の模式
図： の自励振動が可
能なのは の場合だ
け。破線は の場合
の仕事流密度の分布で
す。

∇ Ĩ = − ∇ Q̃ > 0
Ĩ

Q̃ < 0
Ũ ≤ 0
Ĩ < 0

Ũ < 0
Ũ = 0

+

−

0

Ũ

z

Ĩ

Q̃

図 1 2 . 2 　 強 制 振 動
（ ）の場
合の仕事流密度 、熱流密
度 、エネルギー流密度

の分布の模式図：
熱音響ヒートポンプでは

ですがドリームパ
イプでは です。破線
は の場合の熱流密
度の分布です。

∇ Ĩ = − ∇ Q̃ < 0
Ĩ

Q̃
Ũ ≤ 0

Q̃ > 0
Q̃ < 0

Ũ = 0

+

−

0

Ũ

z

Ĩ

Q̃



　温度が である場所 での仕事流密度 と熱流密度 とエネルギー流密度 との関

係を、エネルギー流保存則（ ）とエントロピー流増大則 に基づいて、定性

的に議論した。蓄熱器の機能の概念的理解の結果を図12.1と図12.2に模式的に示した。 

　熱流密度 や仕事流密度 は直線とは限らない。両者の傾きは の符号を表現

しただけです。 の分布が水平線なのはエネルギー流保存則（ ）の顕れです。

が に依存するので、 も場所 に依存する。 の場所を

軸の原点とした。原点では です。実際の蓄熱器は や を含まないこと

もある。 

　自励振動（ ）では図12.1です。自励振動では と とは負です。

の自励振動は の顕れです。同じことですが、自励振動では となる 座標の値

は負です。 

　強制振動（ ）では図12.2です。強制振動による熱音響現象には熱音響

ヒートポンプ（ ）とドリームパイプ（ ）とがある。強制振動では とな

る 座標の値は正です。 

　エネルギー流密度 

	 	 (6.7) 

は位置 に依らないので、 

	  

すなわち 

	  

です。これを変形すると、 

	  

です。 により、熱音響ヒートポンプ（ ）では 

	  

が、熱音響原動機（ ）では 

	  

です。熱音響熱機関で、 が や に比べて充分小さい場合（ ）には、 

Tm z Ĩ Q̃ ≡ TmS̃ Ũ

∇ Ũ = 0 ∇ S̃ ≥ 0

Q̃ Ĩ ∇ Q̃ = − ∇ Ĩ

Ũ ≤ 0 ∇ Ũ = 0

∇ Q̃ = − ∇ Ĩ Tm(z) Q̃ (z) = Ũ − Ĩ (z) z Ĩ = 0 z

Q̃ = Ũ ≤ 0 Q̃ = 0 Ĩ = 0

∇ Q̃ = − ∇ Ĩ < 0 ∇ Q̃ Q̃ Ĩ < 0

∇ S̃ > 0 Q̃ = 0 z

∇ Q̃ = − ∇ Ĩ > 0

Q̃ > 0 Q̃ < 0 Q̃ = 0

z

Ũ ≡ Ĩ + Q̃ ≤ 0

z

∇ Ũ = 0

∇ Ĩ = − ∇ Q̃

∇ Ĩ

Ĩ
= −

Q̃

Ĩ

∇ Q̃

Q̃
Ũ < 0 − Q̃ / Ĩ ≤ 1

∇ Ĩ

Ĩ
<

∇ Q̃

Q̃
− Q̃ / Ĩ ≥ 1

∇ Ĩ

Ĩ
>

∇ Q̃

Q̃
Ũ Ĩ Q̃ − Q̃ / Ĩ ≃ 1
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です。 

　熱流密度 とエントロピー流密度 との関係 を使うと 

	  

です。この右辺を調べよう。 軸の正方向の約束により 

	  

です。非平衡定常状態の熱力学第二法則 を使うと 

	  

の符号は、 の符号と同じです。同じことですが、熱音響ヒートポンプだけは正ですが、

熱音響ヒートポンプ以外では負です。 

　従って、熱音響ヒートポンプ以外（ ）では 

	  

ですが、熱音響ヒートポンプ（ ）だけは 

	  

です。いずれにしても、 

	  

の場合には、 

	  

です。 

　まとめると、 が や に比べて充分小さいだけでは無く、さらに 

	  

の場合にのみ、 

	  

となる。 

∇ Ĩ

Ĩ
≃

∇ Q̃

Q̃

Q̃ S̃ Q̃ ≡ TmS̃

∇ Q̃

Q̃
=

∇Tm

Tm
+

∇ S̃

S̃
z

∇Tm

Tm
> 0

∇ S̃ ≥ 0
∇ S̃

S̃
S̃

S̃ < 0
∇ Q̃

Q̃
<

∇Tm

Tm
S̃ > 0

∇ Q̃

Q̃
>

∇Tm

Tm

∇ S̃

S̃
≪

∇Tm

Tm

∇ Q̃

Q̃
≃

∇Tm

Tm

Ũ Ĩ Q̃

∇ S̃

S̃
≪

∇Tm

Tm

∇ Ĩ

Ĩ
≃

∇ Q̃

Q̃
≃

∇Tm

Tm
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12.3.　仕事流密度 
　拡張キルヒホッフ理論に基づいて、仕事流密度 を音響変数（ 、 、 ）と温度勾配

で表現しよう。 

　自由空間中の（断熱可逆）音波に伴うエネルギー流密度は振動圧力 と振動流速 との積

の時間平均 です。これは音響学では音響強度（acoustic intensity）と呼ばれて

いる。 

　管内音波では、振動流速 の流路断面内分布を考慮して 

	 	 (12.1) 

を仕事流密度と呼ぶ。仕事流密度 の記号はintensityの頭文字に因む。 

　拡張キルヒホッフ理論でも、波長が管径に比べて長い（長波長近似）場合のみ扱うの

で、 は流路断面内で一様です。このために時間平均と流路断面平均の順序を入れ替える

ことが可能となり、(12.1)の等号が成り立つ。 

　複素表示では と の積 の時間平均は、 の複素共役を とすると、 

	  

です。 は実部を表す演算子です。積の時間平均がこのように簡単に計算できることは複

素表示の利点の一つです。 

　 の複素共役 を使うと、 

	  

なので、仕事流密度は 

	  

すなわち 

	 	 (12.2) 

です。流体要素の振動運動を特徴付けるパラメータの一つである位相差 は時間平均して

も の形で位相差 が残っている。 

　(12.2)によれば、仕事流密度 と とは同符号です。同じことですが、 の符号は音

波の進行方向と同じです。仕事流密度 の向きは、 の場合には 軸の正方向であ

り、 の場合には 軸の負方向です。 

　純粋な進行波では です。純粋な定在波では、 なので、 です。例

えば、図12.1と図12.2の原点（ ）では なので です。自励振動の図12.1

Ĩ θ Z ̂p⟨ ̂u⟩r

∇Tm

p u

p ⋅ u ⟨p ⋅ u⟩t

u

Ĩ ≡ ⟨⟨p ⋅ u⟩t⟩r = ⟨p ⋅ ⟨u⟩r⟩t

Ĩ

p

a b a ⋅ b a a†

⟨a ⋅ b⟩t =
1
2

ℜ (a†b)
ℜ

p p†

⟨p ⋅ ⟨u⟩r⟩t
=

1
2

ℜ (p†⟨u⟩r) =
1
2

ℜ [ ̂p exp (−i(ωt + θ )) ⋅ ⟨ ̂u⟩rexp (i (ωt + π /2))]

Ĩ ≡ ⟨p ⋅ ⟨u⟩r⟩t = ℜ exp i ( π
2

− θ) ⋅
1
2

̂p⟨ ̂u⟩r =
1
2

̂p⟨ ̂u⟩rsin θ

Ĩ =
1
2

̂p⟨ ̂u⟩rsin θ

θ

sin θ θ

Ĩ sin θ sin θ

Ĩ sin θ > 0 z

sin θ < 0 z

sin θ = ± 1 sin θ = 0 Ĩ = 0

z = 0 Ĩ = 0 sin θ = 0
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では、 の領域では であり、 の領域では です。強制振動の図12.2

では、 の領域では であり、 の領域では です。 

12.4. エネルギー流密度の分布 
　エネルギー流密度 の分布を議論する。純粋な定在波（ ）では、

なので、 です。逆に、 の所では です。 

　 なので、 は を意味する。 の所での位相差を とすると、 

	 	 (12.3) 

です。 の値は位置 に依らない。 

　(12.3)の意味は重要です。 の値は位置 に依らないので、熱力学第一法則により が水

平線であること 

	  

は、「 の値も位置 に依らない」こと 

	 	 (12.4) 

を意味する。 

　さらに、エネルギー流密度 と とは符号が同じです。従って、図12.1と図12.2での

は 

	 	 (12.5) 

を意味する。 が熱力学第二法則と関わりがあるなら、(12.5)も熱力学第二法則と関

わりがあるに相違ない。 

　(12.2)に(12.4)を使うと「 の 依存性は位相差 の 依存性の顕れ」であり 

	 	 (12.6) 

です。(12.6)によれば、 と とは符号が同じです。つまり、自励振動

（ ）では であり、強制振動（ ）では です。 

12.5.　仕事源 
　仕事源 

	  

z > 0 sin θ > 0 z < 0 sin θ < 0

z > 0 sin θ < 0 z < 0 sin θ > 0

Ũ = Ĩ + Q̃ sin θ = 0 Ĩ = 0

Q̃ = Ũ ≤ 0 Q̃ = 0 Ũ = Ĩ

Q̃ ≡ TmS̃ Q̃ = 0 S̃ = 0 S̃ = 0 θS

Ũ =
1
2

̂p⟨ ̂u⟩rsin θS

θS z

θS z Ũ

∇ Ũ = 0

̂p⟨ ̂u⟩r > 0 z

∇( ̂p⟨ ̂u⟩r) = 0

Ũ sin θS

Ũ ≤ 0

sin θS ≤ 0

Ũ ≤ 0

Ĩ z θ z

∇ Ĩ =
1
2

̂p⟨ ̂u⟩r ⋅ cos θ ∇θ

∇ Ĩ cos θ ∇θ > 0

∇ Ĩ > 0 cos θ ∇θ > 0 ∇ Ĩ < 0 cos θ ∇θ < 0

W ≡ ∇ Ĩ
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は図12.1や図12.2では仕事流密度 の傾きです。強制振動（ ）では であり、

自励振動（ ）では です。(12.6)によれば 

	 	 (12.7) 

です。これは仕事源の数式表現の一つです。強制振動（ ）では ですが自

励振動（ ）では です。(12.7)によれば となるのは あるい

は の場合です。。 

　また 

　	 	 (12.1) 

によれば 

	  

となる。これも仕事源の数式表現の一つです。 

　拡張キルヒホッフ理論に基づいて、仕事源 を音響変数（ 、 、 ）と温度勾

配 とで表現しよう。 

　新たに 

	  

を導入すると 

	 	 (12.8) 

です。 

　まず、 を調べよう。 

	 	 (8.18) 

によれば 

	  

です。この複素共役は 

	  

です。従って、 

	 	 (12.9) 

です。 

　(12.9)によれば、 は位相差 や温度勾配 に依らない。 は振動運動している流体

要素の運動エネルギー密度 

Ĩ ∇ Ĩ < 0 W < 0

∇ Ĩ > 0 W > 0

W =
1
2

̂p⟨ ̂u⟩r ⋅ cos θ ∇θ

W < 0 cos θ ∇θ < 0

W > 0 cos θ ∇θ > 0 W = 0 cos θ = 0

∇θ = 0

Ĩ ≡ ⟨⟨p ⋅ u⟩t⟩r = ⟨p ⋅ ⟨u⟩r⟩t

W ≡ ∇⟨p ⋅ ⟨u⟩r⟩t = ⟨p ⋅ ∇⟨u⟩r⟩t + ⟨∇p ⋅ ⟨u⟩r⟩t

W ≡ ∇ Ĩ θ Z ̂p⟨ ̂u⟩r

∇Tm

Wν ≡ ⟨∇p ⋅ ⟨u⟩r⟩t

W = ⟨p ⋅ ∇⟨u⟩r⟩t + Wν

Wν ≡ ⟨∇p ⋅ ⟨u⟩r⟩t

∂⟨u⟩r

∂t
= − (1 − χν) ∇p

ρm

∇p = − iω
ρm⟨u⟩r

1 − χν

∇p† = iω
ρm⟨u⟩†

r

1 − χ†
ν

Wν ≡ ⟨∇p ⋅ ⟨u⟩r⟩t = − ℑ ( 1
1 − χ†

ν ) ω
1
2

ρm⟨ ̂u⟩2
r < 0

Wν θ ∇Tm Wν
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の粘性による散逸の単位時間当たりの値です。 は速度振幅 の減衰に寄与する。 の

表現(12.9)に含まれている は複素数です。 の 依存性については図

11.2に示した。 の実数部は１に近い。 の虚数部は正で の減少関数

です。 では に反比例し、 では に反比例している。つまり、 は、

では に反比例し、 では に比例する。 

　次に、 

	 	 (12.8) 

の右辺第一項 を調べる。 

	 	 (11.12) 

は の１次式です。これに を乗じて時間平均すると 

	  

ただし 

	 	 (12.10) 

	 	 (12.11) 

です。ここで、位相差 に依存する 

	 	 (12.12) 

は数式表現を短くするために導入した無次元量です。 の 依存性は図11.1に示した。 

　(12.10)によれば も位相差 や温度勾配 に依らない。 は圧力振幅 の減衰に寄与

する。 は振動運動している流体要素の位置エネルギー密度 

	  

の流路断面内熱拡散による単位時間あたりの散逸です。 

　振動運動している流体要素の運動エネルギー密度と位置エネルギー密度の単位時間あた

りの散逸の和 

	  

は一様温度（ ）での管内音波の減衰（attenuation）に対応する。添え字 は

attenuationの頭文字に因む。 

　音響インピーダンス 

	  

を使うと、(12.9)と(12.10)は、それぞれ、 

1
2

ρm⟨ ̂u⟩2
r

Wν ⟨ ̂u⟩r Wν

1/(1 − χ†
ν ) 1/(1 − χ†

ν ) ωτν

1/(1 − χ†
ν ) 1/(1 − χ†

ν ) ωτν

ωτν < 1 ωτν ωτν > 10 ωτν Wν

ωτν < 1 τν ωτν > 10 ω /τν

W = ⟨p ⋅ ∇⟨u⟩r⟩t + Wν

⟨p ⋅ ∇⟨u⟩r⟩t

∇⟨u⟩r = − iω [1 + (γ − 1)χα] KS p + ⟨h⟩r β⟨u⟩r ∇Tm

∇Tm p = ̂p exp i (ωt + θ )

⟨p ⋅ ∇⟨u⟩r⟩t
= Wα + Wθ

Wα ≡ ℑχαω(γ − 1)
1
2

KS ̂p2 < 0

Wθ ≡ wθ β ∇Tm
1
2

̂p⟨ ̂u⟩r

θ

wθ ≡ ℜ⟨h⟩rsin θ − ℑ⟨h⟩rcos θ

⟨h⟩r ωτα

Wα θ ∇Tm Wα ̂p

Wα
1
2

KS ̂p2

WA ≡ Wν + Wα < 0

∇Tm = 0 A

Z ≡
̂p

⟨ ̂u⟩r
> 0
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と 

	  

となる。両者から 

	 	  

	 	 (12.13) 

です。 は や とは関わりが無い。(12.13)によれば、 は 

	  

に比例している。 

　 は の場合に最小値 をとる。同じことですが、

が最小となるのは 

	  

の場合です。この は、 

	  

を使うと 

	  

です。 

　(12.11)によれば、 は位相差 や温度勾配 に依存する。キルヒホッフ理論

（ ）では なので、 は拡張キルヒホッフ理論（ ）の結果です。

特に、 すなわち では、蓄熱器のように が充分大きい所が音源とな

る可能性がある。このことは拡張キルヒホッフ理論の成果の一つです。 

　(12.11)によれば、 は位相差 に依存する と とに比例している。このために

気体（ ）の仕事源 

	  

は の１次式です。 が位相差 に依存しているのは仕事流密度 

	 	 (12.2) 

が位相差 に依存することに対応している。 が に比例するのは、 

Wν = − ℑ ( 1
1 − χ†

ν ) ω
ρm

Z
1
2

̂p⟨ ̂u⟩r < 0

Wα = − ℑχ†
αω(γ − 1)KSZ

1
2

̂p⟨ ̂u⟩r < 0

WA ≡ Wν + Wα = −
ρm

Z
ℑ ( 1

1 − χ†
ν ) + (γ − 1)KSZℑχ†

α ω
1
2

̂p⟨ ̂u⟩r < 0

WA < 0 θ ∇Tm WA < 0

ω
1
2

̂p⟨ ̂u⟩r

−WA ≡ − Wν − Wα ≥ 0 Wα = Wν 2 WνWα

−WA ≡ − Wν − Wα ≥ 0

Z =
ℑ (1/(1 − χ†

ν ))
ℑχ†

α
⋅

ρm

(γ − 1)KS

Z

Z0 = ρmaS =
ρm

KS

Z =
ℑ (1/(1 − χ†

ν ))
ℑχ†

α
⋅

1
γ − 1

Z0

Wθ θ ∇Tm

∇Tm = 0 Wθ = 0 Wθ ≠ 0 ∇Tm > 0

Wθ > 0 wθ β > 0 β ∇Tm > 0

Wθ θ wθ β ∇Tm ≥ 0

βTm ≃ 1

W = WA + Wθ

β ∇Tm Wθ θ

Ĩ =
1
2

̂p⟨ ̂u⟩rsin θ

θ Wθ β ∇Tm
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	 	 (11.12) 

の右辺第二項が振動密度 のラグランジュ微分の対流項 の顕れだからです。 

　仕事源 は と との和です： 

	 	 (12.14) 

なお、キルヒホッフ理論（ ）では です。 なので、拡張キルヒ

ホッフ理論（ ）では 

	  

です。 

　強制振動（ ）では です。 

　自励振動（ ）では です。自励振動（ ）のためには 

	  

が小さいことと、 すなわち 

	  

とが必要です。同じことですが、自励振動の温度勾配 には下限 

	 	 (12.15) 

が存在する： 

	  

は に依らない。(12.13)によれば、 が に比例するからです。 

　非平衡定常状態の揺らぎなどで生じた音波は、 では減衰するが、

では増幅されて定常音波に至る。 

　(12.15)の に(12.13)を使うと 

	 	 (12.16) 

となる。自励振動の温度勾配の下限 は、(12.16)によれば、 に依らず、振動モー

ド（ と ）だけで決まる。 とを小さくするには、 となるように音響イン

ピーダンス を選ぶことと を大きくすることが重要です。 

　気体を想定して とすると、熱音響原動機の必要条件 は と同じです。 

	 	 (12.12) 

∇⟨u⟩r = − iω [1 + (γ − 1)χα] KS p + ⟨h⟩r⟨u⟩r β ∇Tm

ρ u∇ρm

W WA Wθ

W = WA + Wθ

∇Tm = 0 W = WA < 0 WA < 0

∇Tm > 0

W < Wθ

W < 0 Wθ < − WA

W > 0 Wθ > − WA W > 0

−WA > 0

Wθ > 0

wθ β > 0

∇Tm

(∇Tm)W
≡

−WA

wθ β 1
2

̂p⟨ ̂u⟩r

≥ 0

∇Tm > (∇Tm)W

(∇Tm)W
̂p⟨ ̂u⟩r WA ̂p⟨ ̂u⟩r

∇Tm < (∇Tm)W

∇Tm > (∇Tm)W

WA

(∇Tm)W

Tm
=

ω
wθ βTm

ρm

Z
ℑ ( 1

1 − χ†
ν ) + (γ − 1)KSZℑχ†

α

(∇Tm)W
̂p⟨ ̂u⟩r

θ Z (∇Tm)W
Wα = Wν

Z wθ β > 0

β > 0 wθ β > 0 wθ > 0

wθ ≡ ℜ⟨h⟩rsin θ − ℑ⟨h⟩rcos θ
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によれば、 は 

	  

すなわち 

	  

と同じです。 

　 の 依存性（図11.1）によれば、 の値は に依存する。 では

なので、必要条件 は 

	  

と同じで、 が最大になるのは の場合です。 では なの

で、必要条件 は 

	  

と同じで、 が最大になるのは の場合です。 

12.6.　エントロピー流密度 
　拡張キルヒホッフ理論に基づいて、蓄熱器のエントロピー流密度 を音響変数（ 、 、

）と温度勾配 とで表現しよう。 

　微小蓄熱器のエントロピー流密度 は流体の振動運動に伴うエントロピー流密度 

	  

と単純熱伝導によるエントロピー流密度 

	 	 (12.17) 

との和に等しい： 

	 	 (12.18) 

なお、熱伝導度 には蓄熱器の構造材料の軸方向熱伝導度も含まれる。示量性状態量とし

てのエントロピーの絶対値は熱力学の中では不定ですが、流体要素の振動運動に伴うエン

トロピー流密度 が定まる。 

　流体の振動運動に伴うエントロピー流密度 を調べよう。振動エントロピーの

ラグランジュ微分 

	 	 (11.13) 

wθ > 0

ℜ⟨h⟩rsin θ − ℑ⟨h⟩rcos θ > 0

θ > arg⟨h⟩r

⟨h⟩r ωτα arg⟨h⟩r < 0 ωτα ωτα ≪ 1

arg⟨h⟩r ∼ 0 wθ > 0

θ > 0

wθ > 0 θ ∼ π /2 ωτα ≫ 10 arg⟨h⟩r ∼ − π /4

wθ > 0

θ > − π /4

wθ > 0 θ ∼ π /4

S̃ θ Z

̂p⟨ ̂u⟩r ∇Tm

S̃

ρm⟨⟨S ⋅ u⟩t⟩r

S̃κ =
Q̃ κ

Tm
= − κ

∇Tm

Tm

S̃ = ρm⟨⟨S ⋅ u⟩t⟩r + S̃κ

κ

ρm⟨⟨S ⋅ u⟩t⟩r

ρm⟨⟨S ⋅ u⟩t⟩r

DS
Dt

= − fα
β
ρm

Dp
Dt

+ hCp
∇Tm

Tm
⟨u⟩r
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を時間で積分すると、振動運動している流体要素のエントロピーの平均エントロピー か

らのズレは 

	  

です。これと振動流速 

	 	 (8.16) 

とを使うと 

	  

は 

	  

となる。ここでは、数式表現を短くするために、二つの無次元量 

	  

と 

	  

とを導入した。いずれも径方向の位置座標 の関数です。 

　数式表現をさらに短くするために 

	  

	  

を導入すると、 

	 	 (12.19) 

です。 

　この導出過程から明らかなように、 は振動エントロピーのラグランジュ微分 の

対流項の顕れです。従って、キルヒホッフ理論（ ）では です。 は拡張

キルヒホッフ理論の成果の一つです。 は、 に比例するという意味で、単純

熱伝導によるエントロピー流密度(12.17)と似ている。 

　さらに、数式表現を短くするために、位相差 に依存する無次元量 

	 	 (12.20) 

と に比例し熱伝導度の次元をもつ 

	 	 (12.21) 

とを導入すると 

Sm

S = − fα
β
ρm

p + hCp
∇Tm

Tm
⟨ξ⟩r

u =
1 − fν
1 − χν

⟨u⟩r

ρm⟨⟨S ⋅ u⟩t⟩r = ρm ⟨ 1
2

ℜ[S† ⋅ u]⟩
r

ρm⟨⟨S ⋅ u⟩t⟩r = − ⟨ 1
2

ℜ[g† p†⟨u⟩r]⟩
r

β + ⟨ 1
2

ℜ[g†
D⟨ξ†⟩r⟨u⟩r⟩]⟩

r
ρmCp

∇Tm

Tm

g† ≡ f †
α

1 − fν
1 − χν

=
f †

α − f †
α fν

1 − χν

g†
D ≡ h† 1 − fν

1 − χν
=

h† − h† fν
1 − χν

r

S̃θ ≡ −
1
2

ℜ[⟨g†⟩r p†⟨u⟩r]β

S̃D ≡
1
2

ℜ[⟨g†
D⟩r⟨ξ†⟩r⟨u⟩r⟩]ρmCp

∇Tm

Tm

ρm⟨⟨S ⋅ u⟩t⟩r = S̃θ + S̃D

S̃D DS /Dt

∇Tm = 0 S̃D = 0 S̃D ≠ 0

S̃D ∇Tm/Tm ≥ 0

θ

sθ ≡ ℜ⟨g†⟩rsin θ − ℑ⟨g†⟩rcos θ

⟨ ̂ξ⟩2
r

κD ≡ ℑ⟨g†
D⟩r ρmCp

1
2

ω⟨ ̂ξ⟩2
r ≥ 0
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	 	 (12.22) 

	 	 (12.23) 

となる。 は に依らないが、 を通して、位相差 に依存する。 

　変位振幅 の二乗に依存する は対流によるエントロピー流密度に対応する。添え字

は変位（displacement）の頭文字に起因する。また、 はドリームパイプのエントロ

ピー流密度に寄与するので、添え字 はドリーム（dream）の頭文字でもある。図6.1の第

３象限は、熱音響現象では、ドリームパイプに対応する。 

　音響インピーダンス 

	  

を使うと、 

	  

なので、 

	 	 (12.21) 

は 

	 	 (12.24) 

です。 

　(12.24)によれば、 は に反比例している。このことは熱音響機器を設計する際に重

要です。熱音響機器では蓄熱器の設置位置は蓄熱器の機能に依存する。ドリームパイプと

して機能する蓄熱器の位置は、 が大きくなるように、 が小さい所が望ましいが、熱音

響熱機関として機能する蓄熱器の設置位置は、 が小さくなるように、 が大きい所が望

ましい。音響インピーダンス の大小の基準は です。蓄熱器の設置位置は、熱音

響熱機関では の位置が望ましく、ドリームパイプでは の位置が望まし

い。 

　(12.18)と(12.19)とをまとめると、微小蓄熱器のエントロピー流密度は 

	  

です。ただし 

	 	 (6.4) 

と 

	 	 (12.23) 

S̃θ = − sθ β
1
2

̂p⟨ ̂u⟩r

S̃D = − κD
∇Tm

Tm

S̃θ ∇Tm sθ θ

⟨ ̂ξ⟩r S̃D

D S̃D

D

Z ≡
̂p

⟨ ̂u⟩r
> 0

1
2

ω⟨ ̂ξ⟩2
r =

1
ω

1
2

⟨ ̂u⟩2
r =

1
ωZ

1
2

̂p⟨ ̂u⟩r

κD ≡ ℑ⟨g†
D⟩r ρmCp

1
2

ω⟨ ̂ξ⟩2
r

κD = ℑ⟨g†
D⟩r ρmCp

1
ωZ

1
2

̂p⟨ ̂u⟩r

κD ωZ

κD Z

κD Z

Z Z0 = ρmaS

Z /Z0 > 1 Z /Z0 < 1

S̃ = S̃θ + S̃D + S̃κ

S̃κ =
Q̃ κ

T
= − κ

∇Tm

Tm
< 0

S̃D = − κD
∇Tm

Tm
< 0
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と 

　	 	 (12.22) 

です。 だけは と関わりが無いことに注意しよう。 

　エントロピー流密度は の１次式 

	 	 (12.25) 

です。 では です。 と とは に比例するので、キルヒホッフ理論

（ ）では です。熱音響ヒートポンプ（ ）では、 

	 	 (12.26) 

従って 

	  

が必要です。また、(12.26)の右辺は熱音響ヒートポンプの温度勾配 の上限です。 

　 や 

	 	 (12.24) 

の 依存性を調べるために、 を調べよう。 

	 	 (11.9) 

を使うと 

	  

なので 

	  

です。 

　ここで、プラントル数 に注意して、ベッセル関数の性質 

	 	 (12.27) 

すなわち 

	  

などを使うと 

	 	  

S̃θ = − sθ β
1
2

̂p⟨ ̂u⟩r

S̃θ ∇Tm /Tm

∇Tm/Tm > 0

S̃ = − sθ β
1
2

̂p⟨ ̂u⟩r − (κ + κD) ∇Tm

Tm
̂p⟨ ̂u⟩r = 0 S̃ = S̃κ S̃κ S̃D ∇Tm

∇Tm = 0 S̃ = S̃θ S̃ > 0

∇Tm < − sθ βTm ⋅
1
2

̂p⟨ ̂u⟩r

κ + κD

sθ < 0

∇Tm

S̃D

κD = ℑ⟨g†
D⟩r ρmCp

1
ωZ

1
2

̂p⟨ ̂u⟩r

ωτα ℑ⟨g†
D⟩r

h ≡
fα − fν

(1 − Pr) (1 − χν)

g†
D ≡ h† 1 − fν

1 − χν
=

f †
α − f †

ν − f †
α fν + f †

ν fν
(1 − Pr) |1 − χν |2

⟨g†
D⟩r =

χ†
α − χ†

ν − ⟨ f †
α fν⟩r + ⟨ f †

ν fν⟩r

(1 − Pr) |1 − χν |2

Pr ≡ ν /α

⟨ f †
ν fα⟩r =

χ†
ν + Pr χα

1 + Pr

⟨ f †
α fν⟩r =

χ†
α + Pr−1 χν

1 + Pr−1
=

Pr χ†
α + χν

1 + Pr

⟨g†
D⟩r =

χ†
α − Pr χ†

ν − ( χ†
ν + χν) + ℜχν

(1 − Pr2) |1 − χν |2
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です。 

　従って 

	 	 (12.28) 

です。(12.28)によれば、非粘性（ ）では です。 

　 の 依存性を図12.3に示した。これも の場合です。 です。比

較のために も図示した。 では が大きい。 では 

	  

です。 では 

	  

です。 

　 なので 

	 	 (12.29) 

です。(12.29)によれば 

	 	  

です。 は形式的には単純熱伝導 

	 	 (6.4) 

と似ているが、 が振動モードや に依存する点で熱伝導 とは異なる。 

⟨g†
D⟩r =

χ†
α − Pr χ†

ν − ( χ†
ν + χν) + ℜχν

(1 − Pr2) |1 − χν |2

ν = 0 ℑ⟨g†
D⟩r = ℑχ†

α

ℑ⟨g†
D⟩r ωτα Pr = 2/3 ℑ⟨g†

D⟩r ≥ 0

ℑχ†
α = − ℑχα 1 < ωτα < 10 ℑ⟨g†

D⟩r ≥ 0 ωτα ≤ 1
ℑ⟨g†

D⟩r

ℑχ†
α

∼ 1.4

ωτα ≥ 10

ℑ⟨g†
D⟩r ∼ ℑχ†

α

ℑ⟨g†
D⟩r ≥ 0

κD = ℑ⟨g†
D⟩r ρmCp

1
ωZ

1
2

̂p⟨ ̂u⟩r ≥ 0

S̃D = − κD
∇Tm

Tm
≤ 0

S̃D

S̃κ =
Q̃ κ

T
= − κ

∇Tm

Tm
κD ̂p⟨ ̂u⟩r /2 κ
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図12.3　 の場合の の 依存性：比較のために も示した。
これは両対数グラフです。 では、 です。

Pr = 2/3 ℑ⟨g†
D⟩r ωτα ℑχα

ωτα ≤ 10 ℑ⟨g†
D⟩r /ℑχ†

α ≃ 11/8 ≃ 1.4

ωτα



　 の１次式 

	 	 (12.25) 

によれば、熱音響ヒートポンプ（ ）では が必要です。	  

　最後に、 

　	 	 (12.22) 

を調べるために、無次元量 

	 	 (12.20) 

を調べる。このために、 を調べよう。 

　ベッセル関数の性質を使うと 

∇Tm/Tm > 0

S̃ = − sθ β
1
2

̂p⟨ ̂u⟩r − (κ + κD) ∇Tm

Tm
S̃ > 0 sθ β < 0

S̃θ = − sθ β
1
2

̂p⟨ ̂u⟩r

sθ ≡ ℜ⟨g†⟩rsin θ − ℑ⟨g†⟩rcos θ

⟨g†⟩r
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図12.4　 の場合の の 依存性：比較のために も図示し
た。 ですが、 です。また、 です
が、 です。 で です。

Pr = 2 3 ⟨g†⟩r ωτα χ†
α

ℜ⟨g†⟩r < ℜχα ℑ⟨g†⟩r > ℑχ†
α 0 < arg χ†

α < π /4

0 < arg⟨g†⟩r < π /2 ωτα ≃ π arg⟨g†⟩r ≃ π /4

ωτα

ωτα



	 	 (12.27) 

すなわち 

	  

なので 

	  

です。 

　従って 

	 	 (12.30) 

です。(12.30)によれば、非粘性（ ）では です。 

　 の 依存性を図12.4に示した。これも の場合です。比較のために も示し

た。 ですが、 です。 ですが、 で

す。 では です。 と とは 依存性がよく似ているが、

では です。 

　熱音響ヒートポンプ（ ）では 

	  

が必要です。このために熱音響ヒートポンプでは、 が充分小さいことと、 

	  

すなわち 

	  

とが必要です。 

　 は熱音響ヒートポンプが可能な位相差 の範囲を制限する。 

	 	 (12.20) 

を使うと、 は 

	  

すなわち 

	  

と同じだからです。図12.4によれば、例えば、 では なので、

が必要です。 

⟨ f †
ν fα⟩r =

χ†
ν + Pr χα

1 + Pr

⟨ f †
α fν⟩r =

χ†
α + Pr−1 χν

1 + Pr−1
=

Pr χ†
α + χν

1 + Pr

⟨ f †
α − f †

α fν⟩r = χ†
α −

Pr χ†
α + χν

1 + Pr
=

χ†
α − χν

1 + Pr

⟨g†⟩r =
χ†

α − χν

(1 + Pr)(1 − χν)
ν = 0 ⟨g†⟩r = χ†

α

⟨g†⟩r ωτα Pr = 2/3 χ†
α

ℜ⟨g†⟩r < ℜχα ℑ⟨g†⟩r > ℑχ†
α 0 < arg χ†

α < π /4 0 < arg⟨g†⟩r < π /2

ωτα ≃ 10 arg⟨g†⟩r ≃ π /4 ⟨g†⟩r ⟨h†⟩r ωτα

10 < ωτα < 10 arg⟨g†⟩r < arg⟨h†⟩r

S̃ > 0

S̃θ > − (S̃κ + S̃D) ≥ 0

−(S̃κ + S̃D) ≥ 0

S̃θ > 0

sθ < 0

sθ < 0 θ

sθ ≡ ℜ⟨g†⟩rsin θ − ℑ⟨g†⟩rcos θ

sθ < 0

ℜ⟨g†⟩rsin θ − ℑ⟨g†⟩rcos θ < 0

θ < arg⟨g†⟩r

ωτα = 10 arg⟨g†⟩r ∼ π /4

θ < π /4
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　熱音響ヒートポンプでは が大きいことが望ましい。例えば、 では

なので、 で が最大になる。 

　図6.1を思い出すと、熱音響ヒートポンプを別にすれば、 です。特に熱音響原動機

では 

	  

が必要なので 

	  

です。 

12.7.　熱音響理論の問題点 
　熱音響理論のここまでの結果をまとめておこう。 

　熱音響理論では、振動中心の位置が平均温度 であるような流体要素に着目し、拡張キ

ルヒホッフ理論に基づいて、仕事流密度 、仕事源 、エントロピー流密度 を音響

変数（ 、 、 ）と温度勾配 とで表現した。 

　つまり、時間平均圧力 と振動の角周波数 と音響変数（ と と ）と時間平均温度

と温度勾配 が与えられると、仕事流密度 、仕事源 、エントロピー流密度

が決まる。 

　仕事流密度 については 

	 	 (12.2) 

です。仕事流密度 は温度勾配 に依らない。 では です。また

では 

	  

です。 

　 の場合の位相差を とすると、エネルギー流保存則（定常状態の熱力学第

一法則）により 

	 	 (12.3) 

です。 は 

	 	 (12.5) 

を意味する。 

　仕事源 については 

−sθ > 0 ωτα = 10

ℜ⟨g†⟩r ≃ ℑ⟨g†⟩r θ ∼ − π /4 −sθ

S̃ ≤ 0

∇Tm > (∇Tm)W

S̃ < S̃θ − (κ + κD)
(∇Tm)W

Tm

Tm

Ĩ W ≡ ∇ Ĩ S̃

θ Z ̂p⟨ ̂u⟩r ∇Tm

pm ω θ Z ̂p⟨ ̂u⟩r

Tm ∇Tm Ĩ W ≡ ∇ Ĩ S̃

Ĩ

Ĩ =
1
2

̂p⟨ ̂u⟩rsin θ

Ĩ ∇Tm > 0 sin θ = 0 Ĩ = 0

sin θ = ± 1

Ĩ = ± 1
2

̂p⟨ ̂u⟩r

Q̃ ≡ TmS̃ = 0 θS

Ũ =
1
2

̂p⟨ ̂u⟩rsin θS

Ũ ≤ 0

sin θS ≤ 0

W ≡ ∇ Ĩ = − ∇ Q̃
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	 	 (12.14) 

ただし 

	 	 (12.11) 

	 	 (12.13) 

です。仕事源の中で位相差 に依存する だけは温度勾配 に依存している。従っ

て、 は の１次式です。 

　エントロピー流密度 

	  

については 

	 	 (12.20) 

と 

	 	 (12.29) 

とを使うと 

	 	 (12.22) 

	 	 (12.23) 

	  

です。つまり、位相差 に依存する だけは温度勾配 に依らず、 と は

に比例する。従って、エントロピー流密度 は の１次式です： 

	 	 (12.25) 

　こうして、拡張キルヒホッフ理論に基づく数値解などの熱力学的解釈への道が開けた。

数値シミュレーション計算の初めに、蓄熱器内のある位置で、時間平均圧力 と振動の角

周波数 と時間平均温度 と温度勾配 と振動モード（ と ）と とを与えると、蓄

熱器の全ての位置で、時間平均温度 と温度勾配 と振動モード（ と ）と との数

値解を求めることが出来る。 

　熱音響現象の実験では実験者が時間平均圧力 と角周波数 や振動モード（位相差 と音

響インピーダンス ）を選ぶことはある程度可能です。なお、自励振動の角周波数 は通常

W = WA + Wθ

Wθ = wθ β ∇Tm
1
2

̂p⟨ ̂u⟩r

WA ≡ Wν + Wα = −ℑ ( 1
1 − χ†

ν ) ω
ρm

Z
+ ℑχαω(γ − 1)KSZ

̂p⟨ ̂u⟩r

2

θ Wθ ∇Tm > 0

W ≡ ∇ Ĩ = − ∇ Q̃ ∇Tm > 0

S̃ = S̃θ + S̃D + S̃κ

sθ ≡ ℜ⟨g†⟩rsin θ − ℑ⟨g†⟩rcos θ

κD = ℑ⟨g†
D⟩r ρmCp

1
ωZ

̂p⟨ ̂u⟩r

2
≥ 0

S̃θ = − sθ β
1
2

̂p⟨ ̂u⟩r

S̃D = − κD
∇Tm

Tm
≤ 0

S̃κ ≡ − κ
∇Tm

Tm
≤ 0

θ S̃θ ∇Tm/Tm > 0 S̃D S̃κ

∇Tm/Tm > 0 S̃ ∇Tm/Tm > 0

S̃ = − sθ β
1
2

̂p⟨ ̂u⟩r − (κ + κD) ∇Tm

Tm

pm

ω Tm ∇Tm θ Z ̂p⟨ ̂u⟩r

Tm ∇Tm θ Z ̂p⟨ ̂u⟩r

pm ω θ

Z ω
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は最低次の基本周波数ですが、エントロピー流密度 が大きくなると高次の角周波数と共

存したり、高次の角周波数に周波数転移することがある。 

　このように線形理論としての熱音響理論は熱音響現象を記述理解することに成功したよ

うに見える。 

　 

　ここまでの熱音響理論には温度勾配 に関わる二つの問題点がある。 

　第一の問題点：ここまでの熱音響理論では温度勾配 の値が決まらない。熱音響機器

を設計製作した実験家は蓄熱器の設置位置を選ぶことで振動モードを選ぶことが出来る

が、蓄熱器の温度勾配 の大きさを決めることは出来ない。実験家が決めるのは、熱音

響自励振動の実験では熱流密度 だけです。自励振動が発生すると の大

きさが小さくなる。熱音響強制振動の実験では、実験家が決めるのは仕事流密度 だけで

す。 

　第一の問題点のために、熱音響熱機関のシミュレーションの初めに蓄熱器内のある位置

で を与える際に迷いがある。既に実験結果がある場合には、実験結果に従えば良い

が、実験前に行うシミュレーションでは、 の値を直感で決めるしかない。 

　第二の問題点：「12.4. エネルギー流密度の分布」で述べたように は となるとこ

ろでの です。 

	 	 (12.25) 

は を通して に依存するので となる が存在する。従って、(12.25)を使って を推定

することが可能です。しかし、必ずしも 

	 	 (12.5) 

が成り立つとは限らないし、 あるいは は一様な と とに依存する。このため

に一様な の不等号も保証できない。(12.5)や を保証するには と とを

繋ぐ未知の関係が必要です。 

12.8.　エントロピー生成密度 
　ここまでの熱音響理論は、主に、熱音響現象のエネルギー流保存則（熱力学第一法則）

による理解です。ここでは、熱力学第二法則（ ）による理解を目指して、エ

ントロピー生成密度 を議論する。 

	 エントロピー生成密度 は、定常状態ではエントロピー流密度の湧き出しに等しい： 

S̃

∇Tm

∇Tm

∇Tm

Q̃ ≡ TmS̃ ∇Tm/ Q̃ < 0

Ĩ

∇Tm

∇Tm

θS S̃ = 0

θ

S̃ = − sθ β
1
2

̂p⟨ ̂u⟩r − (κ + κD) ∇Tm

Tm
sθ θ S̃ = 0 θ θS

sin θS ≤ 0

θS sin θS ̂p⟨ ̂u⟩r ∇Tm

Ũ ≤ 0 Ũ ≤ 0 ∇Tm ̂p⟨ ̂u⟩r

∇ Ũ = 0 σS ≥ 0

σS

σS
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したがって、熱流密度 を使うと 

	  

です。 

　他方で、非平衡定常状態のエネルギー流密度 の軸方向一様性（ ）、すなわ

ち、 

	  

は 

	  

となる。 

　従って 

	 	 (12.31) 

です。(12.31)は非平衡定常状態の熱力学第一法則の結果です。 

	  

　(12.31)の右辺の仕事源 とエントロピー流密度 に 

	 	 (12.14) 

と 

	  

とを使うと 

	  

です。 

　ここで、数式表現を短くするために 

	 	 (12.32) 

	 	 (12.33) 

	 	 (12.34) 

	 	 (12.35)	 

を導入すると、エントロピー生成密度は 

σS = ∇S̃

Q̃ = TmS̃

∇ Q̃ = TmσS + S̃ ∇Tm

Ũ ∇ Ũ = 0

∇ Ĩ + ∇ Q̃ = 0

W + S̃ ∇Tm + TmσS = 0

σS = − ( W
Tm

+ S̃
∇Tm

Tm )

W S̃

W = WA + Wθ

S̃ = S̃θ + S̃D + S̃κ

σS = − [ Wθ + WA

Tm
+ (S̃θ + S̃D + S̃κ) ∇Tm

Tm ]

σA ≡
−WA

Tm
> 0

σθ ≡ − ( Wθ

Tm
+ S̃θ

∇Tm

Tm )
σκ ≡

− S̃κ ∇Tm

Tm
= κ ( ∇Tm

Tm )
2

> 0

σD ≡
− S̃D ∇Tm

Tm
= κD ( ∇Tm

Tm )
2

> 0
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です。 

　この右辺の中で位相差 に依存する だけは正とは限らない。 は 

	 	 (12.36) 

です。これは、(12.33)に 

	 	 (1211) 

と 

	 	 (12.22) 

とを代入すると得られる。 

　(12.36)によれば、 の符号は とは逆符号です。このために では

です。また、 は に比例している。 

　エントロピー生成密度 

	  

は の二次式です。なぜなら、 は に依らないが、 は

に比例し、 と とは に比例しているからです。実際、(12.32)

と(12.36)と(12.34)と(12.35)を使うと 

	 	 (12.37) 

です。これがエントロピー生成密度 の 依存性です。なお、キルヒホッフ理論

（ ）の場合には、 

	  

となるので、熱力学第二法則（ ）が自動的に成り立っている。 

　(12.37)によれば、エントロピー生成密度 の 依存性は の符号によ

り異なる。まず、 

	  

の場合のエントロピー生成密度 は、 の単調増加関数で、 で最小

値 をとる。このことは図12.5の破線で模式的に示した。 はキルヒホッ

フ理論に対応する。 

σS = σA + σθ + σκ + σD

θ σθ σθ

σθ = − (wθ − sθ) β
1
2

̂p⟨ ̂u⟩r
∇Tm

Tm

Wθ = wθ βTm
∇Tm

Tm

1
2

̂p⟨ ̂u⟩r

S̃θ = − sθ β
1
2

̂p⟨ ̂u⟩r

σθ (wθ − sθ) β (wθ − sθ) β ≥ 0

σθ ≤ 0 σθ ∇Tm/Tm ≥ 0

σS = σA + σθ + σκ + σD

∇Tm/Tm ≥ 0 σA ≥ 0 ∇Tm/Tm ≥ 0 σθ

∇Tm/Tm ≥ 0 σκ σD (∇Tm/Tm)
2

≥ 0

σS = σA − (wθ − sθ) β
1
2

̂p⟨ ̂u⟩r
∇Tm

Tm
+ (κ + κD)( ∇Tm

Tm )
2

σS ∇Tm/Tm ≥ 0

∇Tm/Tm = 0

σS = σA ≥ 0

σS ≥ 0

σS ∇Tm/Tm ≥ 0 (wθ − sθ) β

(wθ − sθ) β ≤ 0

σS ∇Tm/Tm ≥ 0 ∇Tm/Tm = 0

σA ≥ 0 ∇Tm/Tm = 0
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次に、 の場合を議論する。(12.37)を変形すると 

	 	 (12.39) 

ただし 

	 	 (12.40)	 

と 

	 	 (12.41) 

です。 

　 と とは、いずれも、 に依存する。 が大きすぎると(12.41)の不等

号が成り立たない。(12.40)の右辺の 

	  

は無次元量であり、[温度勾配]の次元を持つ 

	  

(wθ − sθ) β > 0

σS = min σS + (κ + κD)
∇Tm

Tm
−

(∇Tm)σ

Tm

2

(∇Tm)σ
≡

wθ − sθ

2
βTm ⋅

1
2

̂p⟨ ̂u⟩r

κ + κD
≥ 0

min σS ≡ σA − (κ + κD)
(∇Tm)σ

Tm

2

≤ σA

(∇Tm)σ
min σS ̂p⟨ ̂u⟩r ̂p⟨ ̂u⟩r

wθ − sθ

2
βTm > 0

1
2

̂p⟨ ̂u⟩r

κ + κD
≥ 0
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σS

(∇Tm)σ

Tm

∇Tm

Tm

σA

0

2
(∇Tm)σ

Tm

min σS

(wθ − sθ) β > 0

(wθ − sθ) β ≤ 0

図12.5　熱音響理論のエントロピー生成密度 の 依存
性：破線は （破線）の場合には です。

（実線）の場合には で最小値
をとる。このためには も必要です。

σS ∇Tm/Tm

(wθ − sθ) β ≤ 0 σS ≥ σA

(wθ − sθ) β > 0 ∇Tm /Tm = (∇Tm)σ /Tm

min σS < σA min σS ≥ 0



は、 を通して音響インピーダンス に依存するので、 の増加関数です。 の場合

には(12.40)の不等号は等号となる。 

　 の場合の は、(12.39)によれば、 

	  

で最小値 をとる。このことは図12.5の実線で模式的に示した。 

　 の場合には、熱力学第二法則 により、 

	 	 (12.42) 

も必要です。必要条件(12.42)は、(12.41)によれば、 

	 	 (12.43) 

です。(12.43)の右辺は の熱力学第二法則 による上限です。なぜなら、 

が大きい場合には(12.43)の両辺とも に依らないが、 が小さい場合には、

(12.43)の右辺と左辺とで 依存性が異なり、(12.40)によれば、左辺 は

に比例するが、右辺は の平方根に比例するからです。 

　図12.5の曲線上の各点は、時間平均温度 と時間平均圧力 と角周波数 や音響変数

（ 、 、 ）とが共通で温度勾配 だけが異なる定常状態を表現している。 

　 では、 が最小値 をとるのは の場合であり、この場合は

キルヒホッフ理論に対応する。しかし、 の場合には、 が最小値 をと

るのは 

	  

の場合です。この場合は拡張キルヒホッフ理論に対応している。 

κD Z Z ̂p⟨ ̂u⟩r = 0

(wθ − sθ) β > 0 σS

∇Tm

Tm
=

(∇Tm)σ

Tm
> 0

min σS ≤ σA

(wθ − sθ) β > 0 σS ≥ 0

min σS ≥ 0

(∇Tm)σ

Tm
≤

σA

κ + κD

(∇Tm)σ/Tm σS ≥ 0

̂p⟨ ̂u⟩r ̂p⟨ ̂u⟩r ̂p⟨ ̂u⟩r

̂p⟨ ̂u⟩r (∇Tm)σ/Tm ̂p⟨ ̂u⟩r

̂p⟨ ̂u⟩r

Tm pm ω

θ Z ̂p⟨ ̂u⟩r ∇Tm

(wθ − sθ) β ≤ 0 σS σA ≥ 0 ∇Tm/Tm = 0

(wθ − sθ) β > 0 σS σA ≥ 0

∇Tm

Tm
=

(∇Tm)σ

Tm
> 0
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13.　安定な熱音響現象の温度勾配 

13.1.　新たな関係 
　熱音響理論は拡張キルヒホッフ理論（ ）という名の流体力学的理論に基づいて

いる。拡張キルヒホッフ理論では と約束することで軸方向座標軸の正方向を定義

した。流体力学的議論では温度勾配 の値は任意パラメターであり、流体力学の外

から与える。 

　熱音響理論によれば、エントロピー生成密度 は の二次式であり、熱音響

理論にはエントロピー生成密度 が最小となる温度勾配が存在する（図12.5）。このこと

は時間平均圧力 と時間平均温度 と角周波数 と音響変数（ と と ）とが共通で

の値だけが異なる非平衡定常状態が存在することを意味する。 

　エントロピー生成密度 が最小となる温度勾配は の符号に依存する。

の場合の は で最小となり、 の場合の は 

	 	 (13.1) 

で最小値をとる。ここで 

	 	 (12.40) 

は時間平均圧力 と時間平均温度 と振動の角周波数 と振動モード（ と ）だけでは決

まらず、 にも依存する。なお、 は に依存する。 

　突然ですが、「安定な熱音響現象の温度勾配 はエントロピー生成が最小となるよう

に選ばれている」と仮定してみよう。この仮定に依れば、 の場合にはキルヒ

ホッフ理論（ ）に対応し、 の場合には熱力学第二法則 

	 	 (12.42) 

を満足する限り、 

	 	 (13.1) 

の拡張キルヒホッフ理論となる。 

　(13.1)を使うと、エントロピー流密度 

	 	 (12.25) 

は 

∇Tm > 0

∇Tm > 0

∇Tm > 0

σS ∇Tm/Tm > 0

σS

pm Tm ω θ Z ̂p⟨ ̂u⟩r

∇Tm/Tm > 0

σS (wθ − sθ) β

(wθ − sθ) β ≤ 0 σS ∇Tm = 0 (wθ − sθ) β > 0 σS

∇Tm = (∇Tm)σ
> 0

(∇Tm)σ
≡

wθ − sθ

2
βTm ⋅

1
2

̂p⟨ ̂u⟩r

κ + κD
> 0

pm Tm ω θ Z

̂p⟨ ̂u⟩r κD ̂p⟨ ̂u⟩r/Z

∇Tm

(wθ − sθ) β ≤ 0
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	 	 (13.2) 

となる。(13.2)は仮定 

	 	 (13.1) 

の結果です 

　 は となる ですが、(13.2)によれば、 は となる です。

は位相差 に依存するが、 や温度勾配 に依存しない。従って、 も や温度勾

配 に依存しない。 や温度勾配 に依存しない も仮定(13.1)の結果です。 の

依存性が充分小さいことは「13.3.　エントロピー流密度：位相差θやωταとの関係」

で述べる。 

　このように、「安定な熱音響現象の はエントロピー生成が最小となるように選ばれ

ている」と仮定すると、熱音響理論の二つの問題点が解消される。 

　さらに、 の 依存性が充分小さいことを使うと、エネルギー流密度 

	 	 (12.3) 

の一様性 は熱力学第一法則は の一様性 

	 	 (13.3) 

を意味する。つまり、圧力振幅 や流速振幅 は軸方向の位置 に依存するが、両者の積

は一様です。 

　従って、仕事流密度 

	 	 (12.2) 

やエントロピー流密度 

	 	 (13.2) 

の位置 依存性は位相差 の 依存性の顕れです。 

	  

　強制振動の実験では、実験者が仕事流密度 

	 	 (12.2) 

を与える。実験者が、位相差 に加えて、 を与えることは を与えることと同じです。 

　自励振動の実験では、実験者がエントロピー流密度 

　	 	 (13.2) 

S̃ = −
wθ + sθ

2
β

1
2

̂p⟨ ̂u⟩r

∇Tm = (∇Tm)σ
> 0

θS Q̃ ≡ TmS̃ = 0 θ θS wθ + sθ = 0 θ wθ + sθ

θ ̂p⟨ ̂u⟩r ∇Tm θS ̂p⟨ ̂u⟩r

∇Tm ̂p⟨ ̂u⟩r ∇Tm θS θS

Tm

∇Tm

θS Tm

Ũ =
1
2

̂p⟨ ̂u⟩rsin θS

∇ Ũ = 0 ̂p⟨ ̂u⟩r

∇( ̂p⟨ ̂u⟩r) ≃ 0

̂p ⟨ ̂u⟩r z

̂p⟨ ̂u⟩r

Ĩ =
1
2

̂p⟨ ̂u⟩rsin θ

S̃ = −
wθ + sθ

2
β

1
2

̂p⟨ ̂u⟩r

z θ z

Ĩ =
1
2

̂p⟨ ̂u⟩rsin θ

θ Ĩ ̂p⟨ ̂u⟩r
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2
β

1
2

̂p⟨ ̂u⟩r
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を与える。実験者が、位相差 に加えて、エントロピー流密度 を与えることも を与え

ることです。 

　従って、位相差 に加えて、エントロピー流密度 あるいは仕事流密度 を与えることは

を与えたことになり、音響インピーダンス も与えられれば 

	 	 (12.40) 

の値が決まる。 は音響インピーダンス に反比例することを思い出すと、 が小さいド

リームパイプでは の値が小さいが、 が大きい熱音響熱機関では が

大きい。この意味でも(13.1)は妥当です。(13.1)が温度勾配 と とを繋ぐ未知の関

係です。 

　仮定「安定な熱音響現象の温度勾配 はエントロピー生成が最小となるように選ばれ

ている」との根拠はどこにあるのか？ 

　既に「10.3.2　エントロピー生成最小の法則」で述べたように、オンサーガーが再発見

（1931年）したエントロピー生成最小の法則は、非平衡定常状態の揺らぎに対する安定

性に関わり、エントロピー生成密度 が最小の非平衡定常状態だけが安定な非平衡定常状

態であることを主張する。従って、エントロピー生成最小の法則によれば、

の値だけが異なる非平衡定常状態の中で、安定な非平衡定常状態として実現されるのはエ

ントロピー生成密度 が最小となる温度勾配 の非平衡状態だけです： 

	 	 (13.1) 

　同じことですが、仮定「安定な熱音響現象の温度勾配 はエントロピー生成が最小と

なるように選ばれている」ことの根拠はエントロピー生成最小の法則です。つまり、エン

トロピー生成最小の法則により、安定な熱音響現象の温度勾配 の値が決まる。こ

のことに筆者が気付いたのは2023年夏の寝苦しい熱帯夜の夢の中でした。 

　安定な熱音響現象を記述理解するには、流体力学の拡張キルヒホッフ理論と熱力学の第

一法則と第二法則だけでなく、熱力学のエントロピー生成最小の法則も使う必要がある。

エントロピー生成最小の法則も熱力学の基本法則の一つです。エントロピー生成最小の法

則も熱力学第二法則（ ）と同様にエントロピー生成密度 に関わる経験則です。 

　安定な熱音響現象の温度勾配として を選ぶのは、人ではなくて、自然です。

自然が熱音響現象の温度勾配として を選ぶ際の選択基準がエントロピー生成最

θ S̃ ̂p⟨ ̂u⟩r

θ S̃ Ĩ

̂p⟨ ̂u⟩r Z

(∇Tm)σ
≡

wθ − sθ

2
βTm ⋅

1
2

̂p⟨ ̂u⟩r
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κD Z Z
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Z (∇Tm)σ

∇Tm ̂p⟨ ̂u⟩r

∇Tm

σS

∇Tm/Tm > 0

σS (∇Tm)σ

∇Tm = (∇Tm)σ
> 0

∇Tm

∇Tm > 0

σS ≥ 0 σS

(∇Tm)σ > 0

(∇Tm)σ > 0
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小の法則です。信心深い人々にとっては、神が を選び出す際の選択基準がエン

トロピー生成最小の法則です。 

　管内流体を強制的に振動させると、ドリームパイプやヒートポンプなどの熱音響現象が

生じる。いずれも、大振幅では顕著な現象です。熱音響強制振動の実験者が振動モード

（ と ）と とを選ぶと、エントロピー生成密度 が最小となる温度勾配 

	 	 (12.40) 

が決まる。 

　 の場合には、 

	 	 (13.2) 

なので、熱音響自励振動の実験者が振動モード（ と ）と熱流密度 を選んでも、

が決まる。このことは、振動モード（ と ）と熱流密度 とを選んだ熱音響自

励振動の実験者が熱音響現象の温度勾配を自由に選んでいると勘違いする一因でしょう。 

　従来は「始めに温度勾配ありき」とされた熱音響自励振動現象のイメージは次のように

変化した。管軸方向のエントロピー流（あるいは熱流）を与えると、(13.2)を満足するよ

うに が決まり、熱音響自励振動（原動機）が生じることがある。熱音響自励振動が

発生するエントロピー流の大きさには下限がある。 

　 の必要条件は二つある。 

　必要条件の一つは 

	 	  

です。拡張キルヒホッフ理論が意味を持つのは の値が大きい場合です。

では、エントロピー生成最小の法則により、安定な温度勾配は で

す。 

　必要条件の二つ目は熱力学第二法則 

	 	 (12.42) 

すなわち 

	 	 (12.43) 

です。 

(∇Tm)σ > 0

θ Z ̂p⟨ ̂u⟩r σS

(∇Tm)σ
≡

wθ − sθ

2
βTm ⋅

1
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Tm
≤
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　(12.43)は だけでなく、 にも熱力学第二法則による上限があることを意

味する。なぜなら、(12.43)の左辺と右辺とで 依存性が異なり、(12.40)によ

れば、左辺 は に比例するが、右辺は 

	 	 (12.32) 

を考慮すると の平方根に比例するからです。 

　振幅が大きくなって の上限を越えると、拡張キルヒホッフ理論が使えなくなる。

は に比例するので、熱音響自励振動では、 の大きい角調波数へ転移することで熱

力学第二法則を満足することも可能でしょう。拡張キルヒホッフ理論では振動流速 の流

路断面内での分布が層流的で 

	 	 (8.16) 

ですが、高調波数への転移が無理なら、大振幅の乱流になるのでしょう。 

　エントロピー生成最小の法則による熱音響現象の必要条件 については

「13.2.　安定な温度勾配：位相差や との関係」で詳しく議論する。 

13.2.　安定な温度勾配：位相差θやωταとの関係 
　エントロピー生成密度 が最小となる温度勾配 

	 	 (12.40) 

は、温度勾配の次元を持つ 

	  

と位相差 に依存する無次元量 

	  

との積です。このために、 は、 

	 　と　  

との単調増加関数です。前者を大きくするには、蓄熱器の位置は音響インピーダンス の

大きい節に近づけるとともに を大きくする。 

　温度勾配 が存在するための必要条件の一つ あるいは 

	  

は可能な位相差の範囲を制限する。特に、気体のように の場合には 

	 	 (13.4) 
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です。以下の議論では、 の場合に限定する。 

　「12.3.　仕事流密度」で使った 

	 	 (12.12) 

と「12.4.　エントロピー流密度」で使った 

	 	 (12.20) 

とを使うと 

　	 	 (13.5) 

です。 

　非粘性（ ）の場合には 

	 	 (13.6) 

です。非粘性（ ）の場合には 

	 　かつ　  

なので 

	 　かつ　  

だからです。 

　 の場合を調べよう。 と との 依存性を図13.1に図

示した。この図は気体（ ）を想定して の場合です。この図から明らかなよ

うに 

	 　かつ　  

です。図13.2は の根拠です。こういうわけで、気体（ ）では、

(13.5)の粗い近似式は 

	 	 (13.6) 

です。 

　安定な熱音響現象では位相差 の可能な範囲が制限される。気体（ ）では、

の必要条件 

	 	 (13.4) 

は、近似式(13.6)と によれば、 

	  

すなわち 

βTm > 0

wθ ≡ ℜ⟨h⟩rsin θ − ℑ⟨h⟩rcos θ
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2
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2
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α ≥ 0
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ℜ (⟨h⟩r − ⟨g†⟩r) ∼ 0 ℑ (⟨g†⟩r − ⟨h⟩r) ≃ 2ℑχ†
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ℜ (⟨h⟩r − ⟨g†⟩r) ∼ 0 βTm ≃ 1
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α cos θ
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> 0

wθ − sθ

2
> 0
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α > 0
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	 	 (13.7) 

です。つまり、安定な熱音響現象では位相差 の範囲は(13.7)に制限される。 

　仕事源 

	 	 (12.7) 

が0になるのは あるいは の場合です。(13.7)を考慮すると、 は と符号

が同じです。このために、 の熱音響現象（ ）では です。また、自励

振動（ ）では で、強制振動（ ）では です。 

−
π
2

< θ <
π
2

θ

W =
1
2

̂p⟨ ̂u⟩r ⋅ cos θ ∇θ

cos θ = 0 ∇θ = 0 W ∇θ

̂p⟨ ̂u⟩r > 0 W ≠ 0 ∇θ ≠ 0

W > 0 ∇θ > 0 W < 0 ∇θ < 0
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図13.1 プラントル数が2/3の場合の の 依存性：実部
は虚部に比べて著しく小さい。

⟨g†⟩r − ⟨h⟩r ωτα

ωτα

図13.2 プラントル数が2/3の場合の の
依存性： と との相違は3%以下です。

ℑ (⟨g†⟩r − ⟨h⟩r)/(2ℑ⟨g†
D⟩r) ωτα

ℑ (⟨g†⟩r − ⟨h⟩r) 2ℑ⟨g†
D⟩r

ωτα



　(13.7)の範囲内で位相差 が自由なら、エントロピー生成密度 が最小になるように、位

相差 が決まる。 は の増加関数です。 

	 	 (13.5) 

の右辺が最大になるのは の場合です。 なので、 

	 	 (13.6) 

が良い近似です。 では なので純粋な定在波に近い。このために では、

(13.6)が、さらに良い近似です。 

　(13.6)によれば、 の値を大きくするには、 の値を大きくすればよい。図

13.1によれば、 

	  

が大きいという意味で興味深いのは、 の領域 

	  

です。この領域では。 が大きいので、蓄熱器の長さを短くすることが可能となる。 

　熱拡散係数 は時間平均温度 の減少関数なので、蓄熱器の高温部では で低温部

では という場合も可能でしょう。熱緩和時間 は熱拡散係数 に反比例し、気体

の熱拡散係数 は温度 の約 乗に比例する。このために、 は温度 の約 乗に反比例

する。 が10倍になることは温度が 倍になることです。例えば、蓄熱器の高

温部が300Kで低温部が70Kの場合に相当する。実際、熱音響冷凍機では一つの蓄熱器で

もっと広い温度領域に対応している。 

　 が大きい領域 は、キルヒホッフ理論（ ）では波動方程式も

拡散方程式も役立たずの領域です。熱音響機器には蓄熱器として機能していない管もあ

る。吸放熱器としても蓄熱器としても機能していない管では を数100以上にすると

となり、キルヒホッフ理論に基づく波動方程式が良い近似になる。しかし、拡

散方程式が良い近似となる の領域は熱音響機器にとっては好ましくない領域で

す。 

13.3.　エントロピー流密度：位相差θやωταとの関係 
　エントロピー流密度 

θ σS
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	 	 (13.2) 

を議論しよう。 

	  

の場合には 

	  

です。 

	  

の場合には 

	  

です。つまり、振動モード（ と ）とエントロピー流密度 が与えられると、 が

決まり、熱音響現象の温度勾配 が決まる。 

　(13.2)によれば、 と とは符号が逆です。特に、気体のように の場合に

は、 と とは符号が逆です。従って、熱音響ヒートポンプ（ ）では 

	  

であり、熱音響ヒートポンプ以外（ ）では 

	  

です。 

　 の 依存性を調べよう。ここでも 

	 	 (12.12) 

と 

	 	 (12.20) 

とを使うと 

	 	 (13.8) 

です。 

　 では、 となる。 は図6.1の横軸（ 軸）に相当することに注意し

よう。従って、 は となる です： 

	 	 (13.9) 
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は の位相角であり、 に依存するが、温度勾配 とは関わりがな

い。この を使うと、(13.8)は、 

	 	  

となる。 

　位相角 の推定に(13.9)を使うと、 と から の値を決めることが出来るが、気体

（ ）では、図11.1から読み取れる と図12.4から読み取れる を使うと、

の値に関わらず、 なので、 の値も、 の値にかかわらず、0と区別が

つかない。 の符号についてはより詳細な数値計算が必要ですが、図12.1や図12.2に示し

た熱音響現象のイメージに依れば 

	 	 (12.5) 

です。 の は温度 に依存するので、「 の値にかかわらず」とは「 に関わらず」

を意味する。 に関わらず が確定すれば、熱音響理論の全ての問題点が解決され

る。 

　エントロピー流密度 は 

	  

とは符号が逆なので、安定な熱音響現象の可能な位相差の範囲 

	 	 (13.7) 

を考慮すると、熱音響ヒートポンプ（ ）では 

	  

が必要であり、熱音響ヒートポンプ以外（ ）では 

	  

が必要です。 

	  

　熱音響自励振動（ ）として動作している蓄熱器では、自励振動の図12.1によれば

なので、(13.7)を考慮すると 

	  

です。特に、 の自励振動では 

	  

であり、 の自励振動では 

θS ⟨g†⟩r + ⟨h⟩r ωτα (∇Tm)σ
> 0

θs

wθ + sθ

2
=

ℜ (⟨g†⟩r + ⟨h⟩r)
2 (sin θ − tan θS cos θ)

θs ⟨h⟩r ⟨g†⟩r θS

βTm ≃ 1 ⟨h⟩r ⟨g†⟩r ωτα

ℑ (⟨g†⟩r + ⟨h⟩r) ≃ 0 θS ωτα

θS

sin θS ≤ 0

ωτα τα Tm ωτα Tm

Tm θS ≤ 0

S̃
wθ + sθ

2
=

ℜ (⟨g†⟩r + ⟨h⟩r)
2 (sin θ − tan θS cos θ)

−
π
2

< θ <
π
2

S̃ > 0

−
π
2

< θ < θS

S̃ < 0

θS < θ <
π
2

W > 0

θ > θS

θS < θ <
π
2

Ĩ ≤ 0

θS < θ ≤ 0

Ĩ ≥ 0
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です。 

　なお、熱音響自励振動（ ）では、 も必要です。	  

13.5.　熱音響自励振動の仕事源 
　熱音響自励振動の温度勾配 

	 	 (12.40) 

は、 が存在するための必要条件の一つ を考慮すると、 

	  

の増加関数です。 となるような では 

	  

ですが、 となるような では 

	  

となる。この右辺は に依存しない。 の増加関数 

　	 	 (12.24) 

も に比例しているからです。 

　従って、 の増加関数である には上限がある： 

	 	 (13.12) 

(13.12)の右辺は の上限です。 のこの上限は によらない。 

　この上限と熱力学第二法則による の上限 

	 	 (12.43) 

との大小関係は一概には決まらない。 が小さいなら、(13.12)は自動的に

(12.43)を満足するが、 が大きい場合には(12.43)に注意する必要がある。 

　今後の議論は熱力学第二法則による上限(12.43)が満足されていると仮定する。 

　強制振動（ ）の場合には、熱力学第二法則（ ）が満足されている限り、

熱音響現象の温度勾配 

	 	 (12.40) 

が実現可能です。 

0 ≤ θ < π /2

W > 0 (∇Tm)σ > (∇Tm)W

(∇Tm)σ
≡

wθ − sθ

2
βTm ⋅

1
2

̂p⟨ ̂u⟩r

κ + κD
> 0

(∇Tm)σ
> 0 (wθ − sθ) β > 0

1
2

̂p⟨ ̂u⟩r

κ + κD
> 0

κD ≪ κ ̂p⟨ ̂u⟩r

1
2

̂p⟨ ̂u⟩r

κ + κD
≃

1
κ

1
2

̂p⟨ ̂u⟩r

κD ≫ κ ̂p⟨ ̂u⟩r

1
2

̂p⟨ ̂u⟩r

κ + κD
≃

ωZ
ℑ⟨g†

D⟩r ρmCp

̂p⟨ ̂u⟩r > 0 ̂p⟨ ̂u⟩r > 0

κD = ℑ⟨g†
D⟩r ρmCp

1
ωZ

̂p⟨ ̂u⟩r

2
> 0

̂p⟨ ̂u⟩r /2

̂p⟨ ̂u⟩r (∇Tm)σ

(∇Tm)σ
≤

wθ − sθ

2
⋅

ωZ
ℑ⟨g†

D⟩r

βTm

ρmCp

(∇Tm)σ (∇Tm)σ
̂p⟨ ̂u⟩r

(∇Tm)σ

(∇Tm)σ
≤

σA

κ + κD
Tm

(wθ − sθ)/2 > 0

(wθ − sθ)/2 > 0

W < 0 min σS ≥ 0

(∇Tm)σ
≡

wθ − sθ

2
βTm ⋅

1
2

̂p⟨ ̂u⟩r

κ + κD
> 0
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　しかし、熱音響自励振動（ ）では 

	 	 (12.14) 

すなわち 

	  

も必要です。 のためには 

	  

が必要で、この場合の温度勾配 には に依らない下限 

	 	 (12.15) 

がある。つまり 

	  

かつ 

	 	 (13.11) 

です。 

　 が大きいところでは、 も(13.12)による上限に近いので、熱音響自励振動

（ ）の仕事源(13.11)は にほぼ比例する。 

　熱音響熱機関のエントロピー流密度 

	 	 (13.2) 

を使うと、 

	  

なので、(13.11)は 

	 	 (13.12) 

となる。このために。 が大きいところでは仕事源 は にほぼ比例する。 

　熱音響自励振動（ ）の必要条件(13.12)のためには、 の上限が 

	 	 (12.16) 

より大きいこと、つまり、 

	  

が必要です。ここで、(13.12)の右辺を使った。平衡状態の熱力学の恒等式 

W > 0

W = WA + Wθ > 0

Wθ > − WA

Wθ > 0

wθ β > 0

∇Tm ̂p⟨ ̂u⟩r

(∇Tm)W
≡

−WA

wθ β 1
2

̂p⟨ ̂u⟩r

≥ 0

(∇Tm)σ
> (∇Tm)W

W = wθ β [(∇Tm)σ
− (∇Tm)W] 1

2
̂p⟨ ̂u⟩r > 0

̂p⟨ ̂u⟩r (∇Tm)σ

W > 0 ̂p⟨ ̂u⟩r

S̃ = −
wθ + sθ

2
β

1
2

̂p⟨ ̂u⟩r

1
2

̂p⟨ ̂u⟩r =
2

wθ + sθ

− S̃
β

W =
2wθ

wθ + sθ
[(∇Tm)σ

− (∇Tm)W] (− S̃) > 0

̂p⟨ ̂u⟩r W − S̃

W > 0 (∇Tm)σ

(∇Tm)W
=

ω
wθ β

ℑ ( 1
1 − χ†

ν ) ρm

Z
+ ℑχ†

α(γ − 1)KSZ

wθZ
wθ − sθ

2ℑ⟨g†
D⟩r

⋅
β2Tm

ρmCp
> ℑ ( 1

1 − χ†
ν ) ρm

Z
+ ℑχ†

α(γ − 1)KSZ
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	 	 (8.24) 

を使って整理すると、 

	  

となる。さらに、近似式 

	 	 (13.6) 

を使うと、この必要条件は 

	 	 (13.13) 

です。(13.13)を満足しない場合には、 はあり得ない。 

　(13.13)の場合には、 すなわち となるような が存在する。こ

の に対応するエントロピー流密度 

	 	 (13.2) 

が熱音響原動機や熱音響自励振動の臨界エントロピー流密度 です。同じ事だが、安

定な熱音響原動機や熱音響自励振動が実現されるのは の場合に制限され

る。　 

	 	 (12.40) 

に、(13.2)を使って を消去すると、　 

	 	 (13.14) 

となる。 

　図13.3では熱音響自励振動分岐 

	  

の に(13.14)を使い、単純熱伝導分岐 

	  

ととともに、模式的に示した。 

　 では、 なので、安定な熱音響自励振動は実現されな

い。安定に実現されるのは単純熱伝導分岐（ ）だけです。単純熱伝導分岐の温度

勾配は に比例している。 

　 では、 なので、安定な熱音響自励振動分岐が実現され

る。 

( ∂T
∂p )

S
= ( ∂V

∂S )
p

=
βTm

ρmCp
=

KT − KS

β

[wθ
wθ − sθ

2ℑ⟨g†
D⟩r

− ℑχ†
α] > ℑ ( 1

1 − χ†
ν ) ρm

(γ − 1)KSZ 2

wθ − sθ

2
≃ ℑχ†

α cos θ

[ wθ cos θ
ℑ⟨g†

D⟩r
− 1] ℑχ†

α > ℑ ( 1
1 − χ†

ν ) ρm

(γ − 1)KSZ 2

W > 0

W = 0 (∇Tm)σ
= (∇Tm)W

̂p⟨ ̂u⟩r

̂p⟨ ̂u⟩r

S̃ = −
wθ + sθ

2
β

1
2

̂p⟨ ̂u⟩r

S̃critical

− S̃ > − S̃critical

(∇Tm)σ
≡

wθ − sθ

2
βTm ⋅

1
2

̂p⟨ ̂u⟩r

κ + κD
> 0

β ̂p⟨ ̂u⟩r

(∇Tm)σ
=

wθ − sθ

wθ + sθ
⋅

−TmS̃
κ + κD

> 0

∇Tm = (∇Tm)σ

(∇Tm)σ

∇Tm =
−TmS̃

κ

0 < − S̃ < − S̃critical (∇Tm)σ
< (∇Tm)W

̂p⟨ ̂u⟩r = 0

− S̃

− S̃ > − S̃critical (∇Tm)σ
> (∇Tm)W
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　単純熱伝導分岐から熱音響自励振動分岐への境界である の前後で、安定な温度

勾配や が不連続なので、 でも、単純熱伝導分岐から熱音響自励振動分

岐への転移は、無限小の揺らぎでは不可能で、有限の揺らぎが必要です。内燃機関の始動

時にはスターターが有限の揺らぎが生じさせるように、熱音響自励振動の始動時には適度

の衝撃が必要です。 

　エントロピー流密度 に着目して、単純熱伝導分岐（ ）と熱音響自励振動分岐

（ ）のエントロピー生成密度 

	 	 (12.31) 

を議論する。 

　単純熱伝導分岐（ ）エントロピー生成密度 は に比例している。単純熱伝導

分岐では 

	 　かつ　  

− S̃critical

̂p⟨ ̂u⟩r − S̃ > − S̃critical

S̃ ̂p⟨ ̂u⟩r = 0

̂p⟨ ̂u⟩r ≠ 0

σS = − ( W
Tm

+ S̃
∇Tm

Tm )
̂p⟨ ̂u⟩r = 0 σS S̃2

W = 0 ∇Tm = −
1
κ

TmS̃
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図13.3　単純熱伝導分岐（ ）と熱音響自励振動分岐
（ ）の模式図： となるのは、 の領
域だけだけです。 となるのは の領域だ
けです。 では単純熱伝導分岐が安定に実現され、

では熱音響自励振動分岐 が安定に実現される。高
温部から低温部へ向かうエントロピー流の大きさ が大きくなって、

となると安定な熱音響自励振動が生じる。熱音響自励振
動は散逸構造の一例です。

∇Tm = − TmS̃ /κ

∇Tm = (∇Tm)σ
W > 0 ∇Tm > (∇Tm)W

(∇Tm)σ
> (∇Tm)W

− S̃ > − S̃critical

0 < − S̃ < − S̃critical

− S̃ > − S̃critical (∇Tm)σ
− S̃

− S̃ > − S̃critical

∇Tm

− S̃

(∇Tm)W

− S̃critical
0

の上限(∇Tm)σ

単純熱伝導分岐

熱音響自励振動分岐



なので 

	  

となるからです。 

　熱音響自励振動分岐（ ）では 

	  

なので 

	 	 (13.15) 

です。これは のほぼ1次式です。特に では、 なので、 

	  

です。これは、単純熱伝導分岐のエントロピー生成密度 

	  

にくらべて小さい。 では、(13.15)の に 

	 	 (13.13) 

を代入すると 

	  

となる。これは、 が大きいところでは、ほぼ に比例する。 

　 では熱音響自励振動分岐は、単純熱伝導分岐と比べると、エントロピー

生成密度が小さい。安定な熱音響自励振動現象は、この意味でも、エントロピー生成最小

の法則の顕れです。 

　熱音響自励振動はプリゴジンの散逸構造の具体例です。プリゴジンによれば「平衡状態

から遠く離れると散逸構造が生じる」とのことだが、プリゴジンは「平衡状態からの距

離」を何で測るか述べていない。熱音響自励振動の場合には「平衡状態からの距離」はエ

ントロピー流密度の大きさ です。 の状態で、適度の衝撃が加わると

安定な熱音響自励振動が生じる。 

13.6.　軸方向変化：位相差と音響インピーダンス 
　キルヒホッフ理論や拡張キルヒホッフ理論に共通の関係 

	 	 (8.23) 

σS = − S̃
∇Tm

Tm
=

1
κ

S̃2 > 0

̂p⟨ ̂u⟩r ≠ 0

∇Tm = (∇Tm)σ

σS =
1

Tm
[−W − S̃ ⋅ (∇Tm)σ]

− S̃ − S̃ = − S̃critical W = 0

σS = − S̃critical
(∇Tm)σ

Tm
= − S̃critical

(∇Tm)W

Tm

1
κ

S̃2
critical > 0

− S̃ > − S̃critical W

W =
2wθ

wθ + sθ
[(∇Tm)σ

− (∇Tm)W] (− S̃) > 0

σS =
1

Tm [(∇Tm)σ
+

2wθ

wθ + sθ
((∇Tm)σ

− (∇Tm)W)] (− S̃)
̂p⟨ ̂u⟩r − S̃

− S̃ ≥ − S̃critical

− S̃ > 0 − S̃ > − S̃critical

∇p = −
ρm

1 − χν

∂⟨u⟩r

∂t
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は温度勾配 に依存しない。 

　(8.23)に複素流速 

	 	 (8.2) 

と複素圧力	  

	 	 (8.3) 

とを使おう。 

　(8.3)を使うと、(8.23)の左辺は 

	  

すなわち 

	  

となる。(8.23)の右辺に(8.2)を代入すると 

	  

となる。両者から と を消去すると 

	  

すなわち 

	  

となる。最後に両辺を で割ると 

	 	 (13.16) 

となる。ここで 

	  

は音響インピーダンスです。 

　音響インピーダンスの軸方向変化 については 

	  

です。 

　安定な熱音響現象では が一様です： 

	 	 (13.3) 

これは 

	  

を意味する、従って、安定な熱音響現象では 

∇Tm

⟨u⟩r =
∂
∂t

⟨ξ⟩r = iω⟨ξ⟩r = ⟨ ̂u⟩rexp i (ωt +
π
2 ) = i⟨ ̂u⟩rexp iωt

p = ̂p exp i (ωt + θ ) = ̂p exp iθ exp iωt

∇p = ∇( ̂p exp iθ) exp iωt

∇p = (cos θ ∇ ̂p − ̂p sin θ ∇θ) exp iωt + i (sin θ ∇ ̂p + ̂p cos θ ∇θ) exp iωt

∇p =
ωρm

1 − χν
⟨ ̂u⟩rexp iωt

∇p exp iωt

∇( ̂p exp iθ) =
ωρm

1 − χν
⟨ ̂u⟩r

(cos θ ∇ ̂p − ̂p sin θ ∇θ) + i (sin θ ∇ ̂p + ̂p cos θ ∇θ) =
ωρm

1 − χν
⟨ ̂u⟩r

̂p

(cos θ
∇ ̂p

̂p
− sin θ ∇θ) + i (sin θ

∇ ̂p
̂p

+ cos θ ∇θ) =
1

1 − χν

ρmω
Z

Z ≡
̂p

⟨ ̂u⟩r

∇Z
∇Z
Z

=
∇ ̂p

̂p
−

∇⟨ ̂u⟩r

⟨ ̂u⟩r

̂p⟨ ̂u⟩r

∇( ̂p⟨ ̂u⟩r) ≃ 0

∇ ̂p
̂p

+
∇⟨ ̂u⟩r

⟨ ̂u⟩r
≃ 0
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	 	 (13.17) 

です。これは、(13.3)を使ったので、定常状態の熱力学的議論の結果です。 

　(13.17)を(13.16)に使うと 

	  

となる。これは と との関係です。この実数部と虚数部とは、それぞれ、 

	  

と	  

	  

です。両者を同時に満足する と は、それぞれ、 

	 	 (13.21) 

と 

	 	 (13.22) 

とです。いずれも位相差 と とに依存する。 

　 の 依存性については、 

	 　と　  

に注意して、 の複素共役 の 依存性を示した図11.2を参照して欲し

い。 

　安定な熱音響現象の蓄熱器を数値シミュレーションする際に(13.21)と(13.22)とが重要

です。数値シミュレーションでは等式として扱う。 

∇Z
Z

≃ 2
∇ ̂p

̂p
≃ − 2

∇⟨ ̂u⟩r

⟨ ̂u⟩r

(cos θ
∇Z
2Z

− sin θ ∇θ) + i (sin θ
∇Z
2Z

+ cos θ ∇θ) ≃
1

1 − χν

ρmω
Z

∇Z ∇θ

cos θ
∇Z
2Z

− sin θ ∇θ ≃ ℜ
1

1 − χν

ρmω
Z

sin θ
∇Z
2Z

+ cos θ ∇θ ≃ ℑ
1

1 − χν

ρmω
Z

∇Z ∇θ

∇Z ≃ 2 (cos θ ℜ
1

1 − χν
+ sin θℑ

1
1 − χν ) ρmω

∇θ ≃ (cos θℑ
1

1 − χν
− sin θ ℜ

1
1 − χν ) ρmω

Z

θ ωτν

1/(1 − χν) ωτν

ℜ
1

1 − χν
= ℜ

1
1 − χ†

ν
ℑ

1
1 − χν

= − ℑ
1

1 − χ†
ν

1/(1 − χν) 1/(1 − χ†
ν ) ωτν
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14.　蓄熱器の数値シミュレーションに向けて 
　蓄熱器の機能を数値シミュレーションすることを目指した計算プログラムの流れの一例

を述べる。 

　蓮根モデルの蓄熱器を想定する。蓮根モデルは多数の直管の束です。その中の１本の直

管を対象とする。蓄熱器を通る仕事流、熱流、エネルギー流などは束状直管の本数に比例

する。 

　熱音響機器として動作している蓄熱器（ ）を想定する。蓄熱器を長さ の微小

蓄熱器の直列接続と見做す。各微小蓄熱器の時間平均温度 は異なる。 

　各微小蓄熱器で値が共通な量には 

　	 蓄熱器の流路半径 、 

	 動作気体の種類と平均圧力 、 

　	 振動角周波数 、 

	 圧力振幅と平均流速との積  

	 微小蓄熱器の長さ  

がある。ここで の一様性 は定常状態の熱力学第一法則 とエント

ロピー生成最小の法則 

	 	 (13.1) 

との顕れでした。 

入力1　各微小蓄熱器内で値が共通な量（ 、 、 、 ）の値を与える。 

入力2　ある場所 の微小蓄熱器に着目し、時間平均温度 、位相差 、音響インピー

ダンス を入力する。 

（注意）「12.　熱音響理論」で使った熱力学的議論により、位相差 は可能な範囲が制限

される。 

計算１　時間平均密度 と平衡状態の熱力学的応答関数（比熱 と断熱圧縮率 と等温圧

縮率 と熱膨張率 ）と輸送係数（熱伝導度 と熱拡散係数 と動粘

性係数 ）などの値を決める。必要ならプラントル数 も計算する。熱伝導度

∇Tm > 0 Δz

Tm(z) > 0

r0

pm

ω

̂p⟨ ̂u⟩r

Δz

̂p⟨ ̂u⟩r ∇( ̂p⟨ ̂u⟩r) = 0 ∇ Ũ = 0

∇Tm = (∇Tm)σ
> 0

r0 pm ω ̂p⟨ ̂u⟩r

z Tm > 0 θ

Z

θ

ρm Cp KS

KT = γKS β > 0 κ α = κ (ρmCp)−1

ν Pr = ν /α ≃ 2/3
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には蓄熱器の構造材料の熱伝導度も含む。いずれも、時間平均圧力 と時間平均温度

の関数だからです。 

計算２　流路半径 を使って、緩和時間（ と ）とを計算する。角周波数

が与えられているので、 と を計算する。 

計算3　ベッセル関数の値とベッセル関数の関数である と と などの値とを計

算する。 

計算４　 と とを使って 

	 	 (13.9) 

を満足する を計算する。 

計算５　着目した微小蓄熱器の位相差 を使って 

	 	 (12.12) 

と 

	 	 (12.20) 

とを計算する。 

　 なら、拡張キルヒホッフ理論が使えるように、 を選び直し、計算5に戻る。 

　 なら、時間平温度 の微小蓄熱器の が確定した。 

計算６　着目した微小蓄熱器の音響インピーダンス を使って 

	 	 (12.24) 

と 

	 	 (12.13) 

と 

	 	 (12.32) 

と 

	 	 (12.40) 

κ pm Tm

r0 τα ≡ r2
0 /α τν ≡ r2

0 /ν ω

ωτα ωτν = Pr ωτα

⟨h⟩r ⟨g⟩r ℑ⟨g†
D⟩r

⟨h⟩r ⟨g⟩r

tan θS =
ℑ (⟨g†⟩r + ⟨h⟩r)
ℜ (⟨g†⟩r + ⟨h⟩r)

θS

θ

wθ ≡ ℜ⟨h⟩rsin θ − ℑ⟨h⟩rcos θ

sθ ≡ ℜ⟨g†⟩rsin θ − ℑ⟨g†⟩rcos θ

wθ − sθ ≤ 0 θ

wθ − sθ > 0 Tm θ

Z

κD = ℑ⟨g†
D⟩r ρmCp

1
ωZ

̂p⟨ ̂u⟩r

2

WA ≡ Wν + Wα = −
ρm

Z
ℑ ( 1

1 − χ†
ν ) + (γ − 1)KSZℑχ†

α ω
̂p⟨ ̂u⟩r

2
< 0

σA ≡
−WA

Tm
> 0

(∇Tm)σ
≡

wθ − sθ

2
βTm ⋅

1
2

̂p⟨ ̂u⟩r

κ + κD
> 0
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と熱力学第二法則による温度勾配の上限 

	 	  

とを計算する。 

　不等式	  

	 	 (12.43) 

が成り立たない（熱力学第二法則に抵触する）場合には、音響インピーダンス を選び直

し、計算６に戻る。 

　不等式(12.43)が成り立つ場合には 

	 	 (13.1) 

とする。これで、位相差 と音響インピーダンス に加えて、温度勾配 も確定した。 

　 

計算７　時間平温度 の微小蓄熱器の仕事流密度 

	 	 (12.2) 

とエネルギー流密度 

	 	 (12.3) 

とエントロピー流密度 

	 	 (13.2) 

とを計算する。 

計算8　変位振幅 

	  

を計算し、微小蓄熱器の長さ が変位振幅より短いこと（ ）を確認する。 

　出力に必要なら 

	 熱流密度  

	 圧力振幅 、流速振幅  

も計算する。 

計算9　時間平温度 の微小蓄熱器の と とを計算する。 の計算には。 

σA

κ + κD
Tm

(∇Tm)σ

Tm
≤

σA

κ + κD

Z

∇Tm = (∇Tm)σ

θ Z ∇Tm

Tm

Ĩ =
1
2

̂p⟨ ̂u⟩rsin θ

Ũ =
1
2

̂p⟨ ̂u⟩rsin θS

S̃ = −
wθ + sθ

2
β

1
2

̂p⟨ ̂u⟩r

⟨ ̂ξ⟩r =
⟨ ̂u⟩r

ω
=

̂p⟨ ̂u⟩r/Z

ω

Δz ∇z < ⟨ ̂ξ⟩r

Q̃ ≡ TmS̃

̂p = Z ⋅ ̂p⟨ ̂u⟩r ⟨ ̂u⟩r = ̂p⟨ ̂u⟩r/Z

Tm ∇θ ∇Z ∇θ
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	 	 (13.22) 

を使い、 の計算には 

	 	 (13.21) 

を使う。 

　これで位置 での計算は終わりです。 

　隣りの位置 にある微小蓄熱器に着目する。 

　位置 が蓄熱器の外なら計算は終わりです。 

　位置 が蓄熱器の中の場合には次へ進む。 

計算10　 

	 時間平均温度　  

	 位相差　  

	 音響インピーダンス　  

を計算する。ここで、複合は計算順序を表す。正号は蓄熱器の低温端から高温端に向かう

計算順序を示し、負号は蓄熱器の高温端から低温端へ向かう計算順序を示す。 

　 

　（ 、 、 、 ）を（ 、 、 、 ）に置き換えてから、

入力２に戻る。 

　これを繰り返す。 

（注）　実際の数値計算では、計算誤差が累積されるEuler法よりも、Runge-Kutta法が

計算誤差が小さい。微小蓄熱器の長さ を小さくしたEuler法よりも、微小蓄熱器の長さ

を大きくしたRunge-Kutta法のほうが優れている。 

∇θ = (cos θℑ
1

1 − χν
− sin θ ℜ

1
1 − χν ) ρmω

Z
∇Z

∇Z = 2 (cos θ ℜ
1

1 − χν
+ sin θℑ

1
1 − χν ) ρmω

z

z ± Δz

z ± Δz

z ± Δz

Tm ± Δz ∇Tm

θ ± Δz ∇θ

Z ± Δz ∇Z

z Tm θ Z z ± Δz Tm ± Δz ∇Tm θ ± Δz ∇θ Z ± Δz ∇Z

Δz

Δz
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残された問題：吸放熱器 
　熱音響理論は蓄熱器などのように管の径方向のエネルギー流密度 の値が良

い近似で零の場合の理論です。熱音響機器では径方向の仕事流 は良い近似で零ですが、

吸放熱器として機能する部品では径方向のエントロピー流密度 が有限です。吸放熱器と

称する部品を構成する材料の熱伝導度が充分大きいと仮定しても、吸放熱器が吸放熱器と

して機能するには流路中の が無視できない。このために、有限の が重要な吸放熱器は

熱音響理論の対象外です。熱音響機器の吸放熱をどのように理解したら良いのか？ 

　キルヒホッフ理論は線形理論です。キルヒホッフは、太さが一様で変位に比べて長い管

の中の流体の振動運動だけを対象とすることで、線形近似が成り立つようにした。 

　管の太さに段差がある場合や開管の開端近くでは、線形近似が成り立たない。蓄熱器の

端では内径 に飛びがあるので、蓄熱器の端から変位振幅 程度の領域を振動中心とす

る流体要素の振動流速 が非線形になる。この非線形領域が吸放熱器として機能するに相

違ない。なぜなら、吸放熱器と称する部品を伴わない熱音響機器でも熱音響現象が生じる

からです。蓄熱器の両端から変位振幅 程度の非線形領域が吸放熱器として機能してい

るのだろう。 

　蓄熱器の両端では流路半径 が不連続です。これが第一の非線形性です。残念ながら、

この非線形領域を流体力学的にまともに議論する方法が見つからない。蓄熱器の端から変

位振幅 程度の領域を振動中心とする流体の振動運動を線形近似で議論することには無

理がある。 

　 のキルヒホッフ理論を温度勾配 に拡張した拡張キルヒホッフ理論も線

形理論です。時間平均温度 と温度勾配 が流路断面内でほとんど一様な場合だけを対

象とすることで線形近似が成り立つようにした。しかし、吸放熱器として機能する可能性

のある領域（=蓄熱器の端から変位振幅 程度の領域）では も も流路断面内で一

様ではない。これが第二の非線形性です。 

　非線形領域についてはまともな議論が困難なので、非線形領域については線形近似が良

い近似となる領域から（数値計算上の）外挿を行う。具体的には、蓄熱器側では、端がな

い蓄熱器（ ）と仮定して第14章の数値計算を続け、吸放熱器側では端

がない吸熱器（ ）として数値計算を続ける。この（数値計算上の）外挿により、

Ũ r ≡ Ĩ r + S̃r

Ĩ r

S̃r

S̃r S̃r

r0 ⟨ ̂ξ⟩r

u

⟨ ̂ξ⟩r

r0

⟨ ̂ξ⟩r

∇Tm = 0 ∇Tm ≠ 0

Tm ∇Tm

⟨ ̂ξ⟩r Tm ∇Tm

∇Tm = (∇Tm)σ
> 0

∇Tm ≃ 0
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吸放熱器と称する部品の端で、温度勾配 とエントロピー流密度 に飛び

が現れる。流路半径 の飛びは の飛びを通して 

	 	 (12.22) 

と 

	 	 (12.23) 

の飛びになり、温度勾配 の飛びは と 

	 	 (6.4) 

の飛びになる。 

　温度勾配 とエントロピー流密度 の飛びとは、（数値計算上の）外挿

なので、許容される。エントロピー流密度 の飛びは吸放熱器での吸放熱量

に相当する。 

　内燃機関では吸熱器は不要です。内燃機関では燃焼した気体を排ガスとして排出するの

で放熱器も不要です。吸放熱器が不要なことは内燃機関の利点です。このことが19世紀後

半に外燃機関が内燃機関に駆逐された主因でしょう。 

　しかし、吸放熱器を必要とするヒートポンプは内燃機関の逆運転では不可能です。実

際、医療用MRIの超伝導磁石などを冷やし続けているのは熱音響現象を応用した冷凍機で

す。 

∇Tm S̃ = S̃θ + S̃D + S̃κ

r0 τα

S̃θ = − sθ β
1
2

̂p⟨ ̂u⟩r

S̃D = − κD
∇Tm

Tm
≤ 0

∇Tm S̃D

S̃κ =
Q̃ κ

Tm
= − κ

∇Tm

Tm

∇Tm S̃ = S̃θ + S̃D + S̃κ

S̃ = S̃θ + S̃D + S̃κ
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